In the field of Additive Manufacturing, the Laser Powder Bed Fusion (LPBF) process is gaining increasing relevance because of significant advancements achieved in recent years. Among the most disruptive innovations is the introduction of multi-material printing, which is attracting growing interest in both academic research and high-value industrial sectors such as aerospace and energy. Many aspects, including system configurations, material combinations, physical phenomena, and printing strategies, remain to be thoroughly investigated and understood. Within this context, the present thesis focuses on the multi-material LPBF printing of Inconel 718 (IN718) and CuCrZr alloys, never processed using the Aconity MIDI+ machine equipped with selective deposition platform (Aerosint). The aim is twofold: to optimize single-material process parameters and to develop an analytical model for simulating heat distribution during multi-material processes. In the first part of this study, a full factorial Design of Experiments is implemented, and sample characterization is carried out through Archimedean density measurements and micrograph analysis. The optimized parameter sets achieve relative densities above 99% for IN718 and 96% for CuCrZr, confirming their suitability for LPBF fabrication under the given experimental conditions. In parallel, a Python-based analytical model is developed. It accounts for conduction phenomenon and enables the evaluation of various laser paths, scanning orders, and interface strategies. The key findings indicate that scanning the two materials together results in better thermal transitions than scanning all one material and then all the other, and this can be further improved by the introduction of a laser power modulation at the interface. Simulation results are compared with data acquired during a multi-material printing. The outcomes of this work provide validated sets of process parameters and a simulation tool that can be employed to design and optimize future multi-material LPBF builds.
Nel campo dell’Additive Manufacturing, il processo Laser Powder Bed Fusion (LPBF) sta acquisendo crescente rilevanza, grazie ai progressi ottenuti negli ultimi anni. Tra le innovazioni più dirompenti vi è la stampa multi-materiale, che sta suscitando sempre più interesse sia nella ricerca accademica che in settori industriali come quello aerospaziale ed energetico. Numerosi aspetti, tra cui diversi sistemi, combinazioni di materiali, fenomeni fisici e strategie di stampa, necessitano ancora di essere approfonditi e compresi. In questo contesto, la presente tesi si concentra sulla stampa multi-materiale LPBF delle leghe Inconel 718 (IN718) e CuCrZr, mai processate utilizzando la macchina Aconity MIDI+ dotata di piattaforma di deposizione selettiva (Aerosint). L’obiettivo è duplice: ottimizzare i parametri di processo per ciascun singolo materiale e sviluppare un modello analitico per simulare la distribuzione del calore durante il processo multi-materiale. Nella prima parte dello studio è stato implementato un piano sperimentale fattoriale completo e la caratterizzazione dei campioni è stata effettuata tramite misure di densità con bilancia di Archimede e analisi micrografica. I set di parametri ottimizzati hanno raggiunto densità relative superiori al 99% per IN718 e al 96% per CuCrZr, confermandone l’idoneità alla fabbricazione LPBF nelle condizioni sperimentali adottate. Parallelamente, è stato sviluppato un modello analitico in ambiente Python, che considera il fenomeno di conduzione e consente la valutazione di diverse strategie in interfaccia, ordini di scansione e schemi di modulazione della potenza del laser. I risultati evidenziano che la scansione dei due materiali insieme dà transizioni termiche migliori della scansione successiva dei singoli materiali, e ciò può essere ulteriormente migliorato introducendo una variazione a gradini della potenza del laser in interfaccia. I risultati delle simulazioni sono poi confrontati con i dati acquisiti durante una stampa multi-materiale. Quindi, questo lavoro fornisce validi set di parametri di processo e uno strumento di simulazione utile per progettare e ottimizzare future stampe LPBF multi-materiale.
In situ monitoring and modeling of multi-material LPBF process: a preliminary investigation
Feltri, Marilisa
2024/2025
Abstract
In the field of Additive Manufacturing, the Laser Powder Bed Fusion (LPBF) process is gaining increasing relevance because of significant advancements achieved in recent years. Among the most disruptive innovations is the introduction of multi-material printing, which is attracting growing interest in both academic research and high-value industrial sectors such as aerospace and energy. Many aspects, including system configurations, material combinations, physical phenomena, and printing strategies, remain to be thoroughly investigated and understood. Within this context, the present thesis focuses on the multi-material LPBF printing of Inconel 718 (IN718) and CuCrZr alloys, never processed using the Aconity MIDI+ machine equipped with selective deposition platform (Aerosint). The aim is twofold: to optimize single-material process parameters and to develop an analytical model for simulating heat distribution during multi-material processes. In the first part of this study, a full factorial Design of Experiments is implemented, and sample characterization is carried out through Archimedean density measurements and micrograph analysis. The optimized parameter sets achieve relative densities above 99% for IN718 and 96% for CuCrZr, confirming their suitability for LPBF fabrication under the given experimental conditions. In parallel, a Python-based analytical model is developed. It accounts for conduction phenomenon and enables the evaluation of various laser paths, scanning orders, and interface strategies. The key findings indicate that scanning the two materials together results in better thermal transitions than scanning all one material and then all the other, and this can be further improved by the introduction of a laser power modulation at the interface. Simulation results are compared with data acquired during a multi-material printing. The outcomes of this work provide validated sets of process parameters and a simulation tool that can be employed to design and optimize future multi-material LPBF builds.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Feltri_Thesis.pdf
solo utenti autorizzati a partire dal 18/11/2026
Descrizione: Tesi
Dimensione
92.22 MB
Formato
Adobe PDF
|
92.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246444