Melanoma is a highly aggressive form of skin cancer, characterized by elevated plasticity and marked metastatic potential. Although clinical management for advanced melanoma has improved over the last decade, therapeutic options are still limited, largely because patients develop primary and acquired resistance to both targeted and immune therapy. This thesis aims to enhance the therapeutic efficacy of the combination of trametinib, a MEK inhibitor, and alisertib, an AURKA inhibitor, in advanced melanoma treatment by utilizing polymeric nanoparticles (NPs)-mediated drug delivery. The combination was previously validated by Dr. Lanfrancone’s research group at the European Institute of Oncology (IEO), as superior to standard of care treatments. Based on previous SBN Lab findings, PLGA NPs stabilized with a PVA surface coating—referred to as PLGA@PVA NPs—were selected as the optimal delivery platform due to their proven superior efficacy over free drug formulations in both in vitro and in vivo melanoma models. A microfluidic synthesis protocol was optimized to co-encapsulate both therapeutic agents into the same carrier, producing highly reproducible NPs (157±7 nm diameter; Polydispersity Index, PdI:0.10±0.01). The formulation achieved the expected target drug ratio (0.032±0.004 mg/mL trametinib and 1.31±0.14 mg/mL alisertib) and was successfully lyophilized. In vitro studies conducted on different therapy-resistant melanoma models (A375-DT, SKMEL28-DT, and MM27-T) revealed that co-loaded NPs were more effective than either single-drug-loaded NPs (trametinib- and alisertib-loaded NPs) or free drugs, both as monotherapies and in combination, at the same ratio as the co-loaded NPs. Following the promising in vitro results, in vivo studies were performed using both a therapy-sensitive PDX model (MM27) and a therapy-resistant model (A375-DT). The co-loaded NPs yielded remarkable results, achieving complete and homogeneous tumor regression in 100% of mice in the sensitive PDX model. Crucially, in the resistant A375-DT model, 75% of mice experienced either tumor regression (4/8 animals) or stable disease (2/8 animals), a significant improvement over the progressive disease observed in the free-drug control groups. These findings strongly validate the co-loaded PLGA@PVA NPs as a highly promising drug delivery platform, capable of boosting therapeutic efficacy and effectively overcoming acquired resistance in melanoma. Despite achieving optimal therapeutic outcomes in immunocompromised mouse models, preliminary in vivo biodistribution studies in immunocompetent models revealed a reduced tumor accumulation of the PLGA@PVA NPs. These results indicate the significant influence of the immune system on PLGA@PVA NPs tumor accumulation, primarily due to enhanced clearance from the bloodstream. To counteract this, novel NPs designs incorporating stealth copolymers were developed to improve immune evasion. The coatings included the gold standard PEG-PLGA and the innovative PEtPPn-PLGA (chosen to address the “PEG dilemma”). Through optimized microfluidic synthesis, five NPs variants were produced (including 75% PEG-PLGA, 75% PEG-PLGA@PVA, and 25%, 50%, and 75% PEtPPn-PLGA), with favorable characteristics: mean diameters ranging from 71 to 153 nm and a PdI < 0.22. Protein corona studies revealed that the PEtPPn-PLGA NPs adsorbed more protein than the PEGylated formulations, and that increasing the PEtPPn-PLGA content resulted in only a marginal reduction in protein adsorption. Cellular internalization studies conducted on MM27 cells revealed that 50% PEtPPn-PLGA NPs exhibited the highest uptake rate among the novel NPs. Nevertheless, all formulations demonstrated a lower uptake efficiency compared to PLGA@PVA NPs. Thus, even considered PEG-containing NPs show superior stealth properties, neither PEG-PLGA nor PEtPPn-PLGA improved cellular internalization. In conclusion, this work validates PLGA@PVA co-loaded NPs as an effective platform for treating also therapy-resistant melanoma, while identifying protein corona formation as a key challenge that warrants further investigation through advanced coating strategies.
Il melanoma è una forma altamente aggressiva di cancro della pelle, caratterizzata da elevata plasticità e marcato potenziale metastatico. Nonostante la gestione clinica del melanoma avanzato sia migliorata nell'ultimo decennio, le opzioni terapeutiche rimangono limitate, principalmente perché i pazienti sviluppano resistenza primaria e acquisita sia alla terapia mirata che all'immunoterapia. Questa tesi si propone di potenziare l'efficacia terapeutica della combinazione di trametinib, un inibitore di MEK, e alisertib, un inibitore di AURKA, nel trattamento del melanoma avanzato mediante la somministrazione di farmaci veicolati da nanoparticelle (NPs) polimeriche. La combinazione è stata precedentemente validata dal gruppo di ricerca della Dr.ssa Lanfrancone presso l'Istituto Europeo di Oncologia (IEO), risultando superiore ai trattamenti standard di cura. Sulla base dei precedenti risultati del SBN Lab, le NPs di PLGA stabilizzate con un rivestimento superficiale di PVA—denominate PLGA@PVA NPs —sono state selezionate come piattaforma di somministrazione ottimale grazie alla loro comprovata efficacia superiore rispetto alle formulazioni a farmaco libero sia nei modelli di melanoma in vitro che in vivo. È stato ottimizzato un protocollo di sintesi microfluidica per co-incapsulare entrambi gli agenti terapeutici nello stesso carrier, producendo NPs altamente riproducibili (diametro 157±7 nm; indice di polidispersione, PdI: 0.10±0.01). La formulazione ha raggiunto il rapporto tra farmaci previsto (0.032±0.004 mg/mL di trametinib e 1.31±0.14 mg/mL di alisertib) ed è stata liofilizzata con successo. Studi in vitro condotti su diversi modelli di melanoma resistenti alla terapia (A375-DT, SKMEL28-DT e MM27-T) hanno rivelato che le NPs co-caricate erano più efficaci sia delle NPs caricate con singolo farmaco (NPs caricate con trametinib e alisertib) sia dei farmaci liberi, sia come monoterapie che in combinazione, allo stesso rapporto delle NPs co-caricate. A seguito dei promettenti risultati in vitro, sono stati condotti studi in vivo utilizzando sia un modello PDX sensibile alla terapia (MM27) che un modello resistente (A375-DT). Le NPs co-caricate hanno ottenuto risultati notevoli, raggiungendo una regressione tumorale completa e omogenea nel 100% dei topi nel modello PDX sensibile. In modo cruciale, nel modello resistente A375-DT, il 75% dei topi ha sperimentato regressione tumorale (4/8 animali) o malattia stabile (2/8 animali), un miglioramento significativo rispetto alla progressione della malattia osservata nei gruppi di controllo trattati con farmaco liberi. Questi risultati convalidano fortemente le PLGA@PVA NPs co-caricate come una piattaforma di somministrazione di farmaci altamente promettente, capace di potenziare l'efficacia terapeutica e superare efficacemente la resistenza acquisita nel melanoma. Nonostante il raggiungimento di risultati terapeutici ottimali in modelli murini immunocompromessi, studi preliminari di biodistribuzione in vivo in modelli immunocompetenti hanno rivelato un ridotto accumulo tumorale delle PLGA@PVA NPs. Questi risultati indicano l'influenza significativa del sistema immunitario sull'accumulo tumorale delle PLGA@PVA NPs, principalmente dovuto a una maggiore clearance dal flusso sanguigno. Per contrastare ciò, sono stati sviluppati nuovi design di NPs incorporando copolimeri stealth per migliorare l'evasione immunitaria. I rivestimenti includevano il gold standard PEG-PLGA e l'innovativo PEtPPn-PLGA (scelto per affrontare il dilemma del PEG). Attraverso una sintesi microfluidica ottimizzata, sono state prodotte cinque varianti di NPs (incluse 75% PEG-PLGA, 75% PEG-PLGA@PVA e 25%, 50% e 75% PEtPPn-PLGA), con caratteristiche favorevoli: diametri medi compresi tra 71 e 153 nm e un PdI < 0.22. Gli studi sulla corona proteica hanno rivelato che le PEtPPn-PLGA NPs adsorbivano più proteine rispetto alle formulazioni PEGilate, e l'aumento del contenuto di PEtPPn-PLGA ha comportato solo una riduzione marginale dell'adsorbimento proteico. Gli studi di internalizzazione cellulare condotti su cellule MM27 hanno rivelato che le 50% PEtPPn-PLGA NPs mostravano il tasso di uptake più elevato tra le nuove NPs. Tuttavia, tutte le formulazioni hanno dimostrato un'efficienza di uptake inferiore rispetto alle PLGA@PVA NPs. Pertanto, sebbene le NPs contenenti PEG mostrino proprietà stealth superiori, né PEG-PLGA né PEtPPn-PLGA hanno migliorato la loro internalizzazione cellulare. In conclusione, questo lavoro convalida le PLGA@PVA NPs co-caricate come una piattaforma efficace per il trattamento anche del melanoma resistente alla terapia, identificando al contempo la formazione della corona proteica come una sfida chiave che merita ulteriori indagini attraverso strategie di rivestimento avanzate.
Optimization of PLGA-based nanoparticles for melanoma therapy: dual drug loading, protein corona and drug bioavailability
Prandini, Federica Maria
2024/2025
Abstract
Melanoma is a highly aggressive form of skin cancer, characterized by elevated plasticity and marked metastatic potential. Although clinical management for advanced melanoma has improved over the last decade, therapeutic options are still limited, largely because patients develop primary and acquired resistance to both targeted and immune therapy. This thesis aims to enhance the therapeutic efficacy of the combination of trametinib, a MEK inhibitor, and alisertib, an AURKA inhibitor, in advanced melanoma treatment by utilizing polymeric nanoparticles (NPs)-mediated drug delivery. The combination was previously validated by Dr. Lanfrancone’s research group at the European Institute of Oncology (IEO), as superior to standard of care treatments. Based on previous SBN Lab findings, PLGA NPs stabilized with a PVA surface coating—referred to as PLGA@PVA NPs—were selected as the optimal delivery platform due to their proven superior efficacy over free drug formulations in both in vitro and in vivo melanoma models. A microfluidic synthesis protocol was optimized to co-encapsulate both therapeutic agents into the same carrier, producing highly reproducible NPs (157±7 nm diameter; Polydispersity Index, PdI:0.10±0.01). The formulation achieved the expected target drug ratio (0.032±0.004 mg/mL trametinib and 1.31±0.14 mg/mL alisertib) and was successfully lyophilized. In vitro studies conducted on different therapy-resistant melanoma models (A375-DT, SKMEL28-DT, and MM27-T) revealed that co-loaded NPs were more effective than either single-drug-loaded NPs (trametinib- and alisertib-loaded NPs) or free drugs, both as monotherapies and in combination, at the same ratio as the co-loaded NPs. Following the promising in vitro results, in vivo studies were performed using both a therapy-sensitive PDX model (MM27) and a therapy-resistant model (A375-DT). The co-loaded NPs yielded remarkable results, achieving complete and homogeneous tumor regression in 100% of mice in the sensitive PDX model. Crucially, in the resistant A375-DT model, 75% of mice experienced either tumor regression (4/8 animals) or stable disease (2/8 animals), a significant improvement over the progressive disease observed in the free-drug control groups. These findings strongly validate the co-loaded PLGA@PVA NPs as a highly promising drug delivery platform, capable of boosting therapeutic efficacy and effectively overcoming acquired resistance in melanoma. Despite achieving optimal therapeutic outcomes in immunocompromised mouse models, preliminary in vivo biodistribution studies in immunocompetent models revealed a reduced tumor accumulation of the PLGA@PVA NPs. These results indicate the significant influence of the immune system on PLGA@PVA NPs tumor accumulation, primarily due to enhanced clearance from the bloodstream. To counteract this, novel NPs designs incorporating stealth copolymers were developed to improve immune evasion. The coatings included the gold standard PEG-PLGA and the innovative PEtPPn-PLGA (chosen to address the “PEG dilemma”). Through optimized microfluidic synthesis, five NPs variants were produced (including 75% PEG-PLGA, 75% PEG-PLGA@PVA, and 25%, 50%, and 75% PEtPPn-PLGA), with favorable characteristics: mean diameters ranging from 71 to 153 nm and a PdI < 0.22. Protein corona studies revealed that the PEtPPn-PLGA NPs adsorbed more protein than the PEGylated formulations, and that increasing the PEtPPn-PLGA content resulted in only a marginal reduction in protein adsorption. Cellular internalization studies conducted on MM27 cells revealed that 50% PEtPPn-PLGA NPs exhibited the highest uptake rate among the novel NPs. Nevertheless, all formulations demonstrated a lower uptake efficiency compared to PLGA@PVA NPs. Thus, even considered PEG-containing NPs show superior stealth properties, neither PEG-PLGA nor PEtPPn-PLGA improved cellular internalization. In conclusion, this work validates PLGA@PVA co-loaded NPs as an effective platform for treating also therapy-resistant melanoma, while identifying protein corona formation as a key challenge that warrants further investigation through advanced coating strategies.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Prandini_Federica Maria_thesis.pdf
solo utenti autorizzati a partire dal 19/11/2028
Descrizione: Tesi
Dimensione
6.68 MB
Formato
Adobe PDF
|
6.68 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Prandini_Federica Maria_Executive Summary.pdf
solo utenti autorizzati a partire dal 19/11/2028
Descrizione: Executive Summary
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246497