This thesis presents the development of an integrated modelling and simulation framework aimed at improving motorcycle dynamics simulations in racing application, with a particular focus on enhancing tyre modelling. Starting from the motorcycle Pacejka Magic Formula (MF), an enhanced model was developed to more accurately reproduce camber effects. Exploiting experimental measurements of tyre forces, a parameter identification process was performed. The enhanced model allowed to halve the average longitudinal camber-related fitting error. Additionally, a thermodynamic model based on the Mizuno approach was developed to estimate tyre temperature, and an Evo model was proposed to include the effect of carcass deformations. Further coefficients were included in the MF to account for temperature dependent variations in grip and stiffness. Simulation was tackled through a developed VI-Motorcycle multibody model. Rider movement has been included starting from experimental measurements, to achieve a better estimation of the dynamic centre of gravity. Two simulations interfaces have been employed in the work: VI-BikeRealTime and Simulink. The former exploits a Dynamic-Link Library to include the enhanced tyre model, while the latter does so via a dedicated Simulink block. Ultimately, both interfaces proved to be feasible alternatives to the internal model, with their own pros and cons, yielding comparable results. During testing, limitations were identified with the MaxPerformance optimization algorithm, which in the future could be fixed by substituting it with a user-defined controller. Nevertheless, when comparing identical manoeuvres with the same velocity profile and tyre forces, the enhanced model showed a significant increase in longitudinal slip value to achieve such force. Regarding the effect of temperature, the Mizuno model proved effective in braking and traction, but underestimates generated heat in cornering. This was addressed with the Evo model, accounting for tyre carcass deformation. Lastly, steering pad manoeuvres highlighted significant limit acceleration differences with temperature.
Questa tesi presenta lo sviluppo di un ambiente integrato di modellazione e simulazione per migliorare la fedeltà delle simulazioni dinamiche, con particolare cura alla modellazione degli pneumatici. A partire dalla Pacejka Magic Formula (MF) per motocicli, è stato sviluppato un modello migliorato per riprodurre più efficacemente gli effetti del camber. Sfruttando dati sperimentali, è stato eseguito un processo di identificazione dei parametri che ha permesso di dimezzare l’errore medio di fitting longitudinale legato al camber. Inoltre, è stato sviluppato un modello termodinamico basato sull’approccio di Mizuno per stimare la temperatura dello pneumatico ed è stato proposto un modello Evo per includere l’effetto delle deformazioni della carcassa. Sono stati introdotti ulteriori coefficienti nella MF per tenere conto delle variazioni di grip e rigidezza legate alla temperatura. La simulazione è basata sullo sviluppo di un modello multibody VI-Motorcycle. Il movimento del pilota è stato incluso a partire da misurazioni sperimentali, per ottenere una migliore stima dinamica del baricentro. Durante il lavoro sono state utilizzate due interfacce di simulazione: VI-BikeRealTime e Simulink. La prima utilizza una Dynamic-Link Library per includere il modello migliorato dello pneumatico, mentre la seconda lo integra tramite un blocco dedicato. Entrambe le soluzioni si sono rivelate valide alternative al modello interno, con pro e contro specifici, fornendo risultati comparabili. Le prove hanno individuato limiti dell’algoritmo di ottimizzazione MaxPerformance, che in futuro potrebbero essere risolti sostituendolo con un controllore esterno. Tuttavia, confrontando manovre con stesso profilo di velocità e forze sullo pneumatico, il modello migliorato ha mostrato un significativo aumento dello slittamento necessario a generare tale forza. Per quanto riguarda l’effetto della temperatura, il modello di Mizuno si è dimostrato efficace nel longitudinale, ma sottostima il calore generato in curva. Questo è stato risolto con il modello Evo sopracitato. Infine, manovre su steering pad hanno evidenziato significative differenze nell’accelerazione limite in funzione della temperatura.
An integrated modelling and simulation framework to account for the effect of camber and temperature on motorcycle tyres
ALESSANDRI, ANDREA;Galbusera, Matteo
2024/2025
Abstract
This thesis presents the development of an integrated modelling and simulation framework aimed at improving motorcycle dynamics simulations in racing application, with a particular focus on enhancing tyre modelling. Starting from the motorcycle Pacejka Magic Formula (MF), an enhanced model was developed to more accurately reproduce camber effects. Exploiting experimental measurements of tyre forces, a parameter identification process was performed. The enhanced model allowed to halve the average longitudinal camber-related fitting error. Additionally, a thermodynamic model based on the Mizuno approach was developed to estimate tyre temperature, and an Evo model was proposed to include the effect of carcass deformations. Further coefficients were included in the MF to account for temperature dependent variations in grip and stiffness. Simulation was tackled through a developed VI-Motorcycle multibody model. Rider movement has been included starting from experimental measurements, to achieve a better estimation of the dynamic centre of gravity. Two simulations interfaces have been employed in the work: VI-BikeRealTime and Simulink. The former exploits a Dynamic-Link Library to include the enhanced tyre model, while the latter does so via a dedicated Simulink block. Ultimately, both interfaces proved to be feasible alternatives to the internal model, with their own pros and cons, yielding comparable results. During testing, limitations were identified with the MaxPerformance optimization algorithm, which in the future could be fixed by substituting it with a user-defined controller. Nevertheless, when comparing identical manoeuvres with the same velocity profile and tyre forces, the enhanced model showed a significant increase in longitudinal slip value to achieve such force. Regarding the effect of temperature, the Mizuno model proved effective in braking and traction, but underestimates generated heat in cornering. This was addressed with the Evo model, accounting for tyre carcass deformation. Lastly, steering pad manoeuvres highlighted significant limit acceleration differences with temperature.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Alessandri_Galbusera.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Master thesis
Dimensione
74.94 MB
Formato
Adobe PDF
|
74.94 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Alessandri_Galbusera_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive_Summary
Dimensione
13.7 MB
Formato
Adobe PDF
|
13.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246596