Construction systems are rapidly evolving based on principles of technological innovation and environmental sustainability. Traditional technologies, based on concrete and masonry, no longer meet the growing demand for efficiency, speed, and reduced environmental impact. The use of water on site, curing time and the high production of non-recyclable waste, have encouraged the spread of dry construction methods. This technology is widely used for internal partitions, but it is rarely applied to external walls. This thesis presents a comparative analysis of two real case studies: a traditional external wall and a dry construction wall. In addition, an improved variant of the dry construction wall was introduced, designed for enhanced environmental sustainability through the use of natural hemp-fiber insulation panels. Performance was assessed through thermal and hygrothermal, acoustic, structural, environmental, and economic analyses. The modelling phase revealed several challenges due to the lack of specific standards for multilayer and dry structures, requiring the use of simplified numerical models based on literature references. In particular, acoustic analysis adopted models derived from the study of sandwich metamaterial panels, while structural analysis treated dry systems as composite steel–concrete elements. The significance of the results lies in demonstrating that the dry construction solution, in addition to its well-known advantages in terms of cost, time, and environmental impact, provides comparable or even superior performance to masonry in both structural and acoustic aspects, proving its suitability for external partitions. Furthermore, the variant with natural insulation proved to be the most balanced solution in terms of performance, sustainability, and cost.
I sistemi costruttivi stanno evolvendo rapidamente secondo criteri di innovazione tecnologica e sostenibilità ambientale. Le tecnologie tradizionali, basate su calcestruzzo e muratura, non rispondono più alle esigenze di efficienza, rapidità e riduzione dell’impatto ambientale. L’impiego di acqua in cantiere, i tempi di presa e l’elevata produzione di scarti non riciclabili hanno favorito la diffusione dei metodi costruttivi a secco. Questa tecnologia è ampiamente usata per le pareti divisorie, ma raramente viene impiegata anche per le partizioni perimetrali. Questa tesi presenta un'analisi comparativa su due casi studio reali: una parete perimetrale tradizionale e una a secco. È stata inoltre introdotta una variante migliorativa della parete a secco, orientata alla sostenibilità ambientale, che prevede l’impiego di pannelli isolanti naturali in fibra di canapa. Le prestazioni sono state valutate secondo analisi termiche e igrotermiche, acustiche, strutturali, ambientali ed economiche. La modellazione ha evidenziato diverse criticità dovute alla mancanza di una normativa specifica per le strutture a secco e multistrato che ha reso necessario il ricorso a modelli numerici semplificati basati sulla letteratura. In particolare, per l’analisi acustica sono stati adottati modelli derivati dallo studio di pannelli sandwich di metamateriali, mentre per l’analisi strutturale i sistemi a secco sono stati assimilati a elementi compositi in acciaio e calcestruzzo. L'importanza dei risultati ottenuti risiede nell'aver dimostrato che la soluzione a secco, oltre ai vantaggi noti in termini di costi, tempi e impatto ambientale, offre prestazioni comparabili o superiori alle murature anche sotto il profilo strutturale e acustico, mostrandone l'adeguatezza per la realizzazione di partizioni perimetrali. La variante con isolante naturale, inoltre, si è dimostrata la soluzione più equilibrata tra prestazioni, sostenibilità e costi.
Innovazione e sostenibilità nei sistemi costruttivi: analisi comparativa tra partizioni perimetrali tradizionali e a secco nei progetti Homepooling
Lanzavecchia, Laura
2024/2025
Abstract
Construction systems are rapidly evolving based on principles of technological innovation and environmental sustainability. Traditional technologies, based on concrete and masonry, no longer meet the growing demand for efficiency, speed, and reduced environmental impact. The use of water on site, curing time and the high production of non-recyclable waste, have encouraged the spread of dry construction methods. This technology is widely used for internal partitions, but it is rarely applied to external walls. This thesis presents a comparative analysis of two real case studies: a traditional external wall and a dry construction wall. In addition, an improved variant of the dry construction wall was introduced, designed for enhanced environmental sustainability through the use of natural hemp-fiber insulation panels. Performance was assessed through thermal and hygrothermal, acoustic, structural, environmental, and economic analyses. The modelling phase revealed several challenges due to the lack of specific standards for multilayer and dry structures, requiring the use of simplified numerical models based on literature references. In particular, acoustic analysis adopted models derived from the study of sandwich metamaterial panels, while structural analysis treated dry systems as composite steel–concrete elements. The significance of the results lies in demonstrating that the dry construction solution, in addition to its well-known advantages in terms of cost, time, and environmental impact, provides comparable or even superior performance to masonry in both structural and acoustic aspects, proving its suitability for external partitions. Furthermore, the variant with natural insulation proved to be the most balanced solution in terms of performance, sustainability, and cost.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Lanzavecchia_Executive Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
728.79 kB
Formato
Adobe PDF
|
728.79 kB | Adobe PDF | Visualizza/Apri |
|
2025_12_Lanzavecchia_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
7.44 MB
Formato
Adobe PDF
|
7.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246659