Motivated by the need to enhance rider safety, this thesis addresses the unique perception challenges of autonomous motorcycles, which differ from four-wheeled vehicles due to complex dynamics like high roll angles during cornering. We present the design, implementation, and experimental validation of a complete perception pipeline for an autonomous motorcycle, aimed at generating a reliable estimation of the navigable area. The proposed perception pipeline is composed of three main components. First, a semantic segmentation module based on a Convolutional Neural Network (CNN) was adapted to handle the motorcycle’s roll dynamics. A Roll Augmentation training strategy was identified as the most effective solution to enhance robustness in high-roll scenarios. The network was then retrained for binary segmentation and fine-tuned on a custom dataset, achieving accurate road and obstacle identification on the testing ground. Second, an Inverse Perspective Mapping (IPM) method was developed to generate a Bird’s-Eye View (BEV) of the navigable area. We compared a simple IMU-based approach with an alternative method using LiDAR and the RANSAC algorithm to dynamically estimate the road plane. This IPM-RANSAC approach significantly reduced geometric distortions caused by road banking, slope, and suspension dynamics. Finally, a Multi-Layer Gridmap (MLG) fuses the BEV projections into a unified, spatio-temporal occupancy grid, providing a probabilistic representation of navigability. The entire pipeline was validated offline using data recorded from the experimental motorcycle at the CREA-IT test track under various driving conditions, confirming its effectiveness in generating a reliable navigable area estimation. This work lays a solid foundation for future advancements in autonomous motorcycle navigation and control.
Motivata dalla necessità di aumentare la sicurezza del pilota, questa tesi affronta le sfide di percezione uniche delle motociclette autonome, che differiscono dalle auto a causa di dinamiche complesse come gli elevati angoli di rollio. Viene presentata la progettazione, l’implementazione e la validazione di una pipeline di percezione completa per una motocicletta autonoma, finalizzata a generare una stima affidabile dell’area navigabile. La pipeline di percezione proposta è composta da tre moduli principali. Il primo, un modulo di segmentazione semantica basato su CNN, è stato adattato per gestire le dinamiche di rollio della moto. Una strategia di addestramento con Roll Augmentation è stata identificata come la soluzione più efficace per aumentare la robustezza in scenari con elevato rollio. La rete è stata poi riaddestrata per la segmentazione binaria e affinata su un dataset personalizzato, ottenendo un’accurata identificazione della strada e degli ostacoli sul circuito di prova. Il secondo modulo implementa un metodo di Inverse Perspective Mapping (IPM) per generare una vista dall’alto (Bird’s-Eye View, BEV) dell’area navigabile. È stato confrontato un approccio basato solo su IMU con un’alternativa che utilizza il LiDAR e l’algoritmo RANSAC per stimare dinamicamente il piano stradale. Questo approccio, denominato IPM-RANSAC, ha ridotto significativamente le distorsioni geometriche dovute all’inclinazione della strada, alla pendenza e alle dinamiche delle sospensioni. Infine, una Multi-Layer Gridmap (MLG) fonde le proiezioni BEV in una griglia di occupazione unificata che evolve nel tempo, fornendo una rappresentazione probabilistica della navigabilità. L’intera pipeline è stata validata offline utilizzando dati registrati dalla moto sperimentale presso il circuito di prova CREA-IT in diverse condizioni di guida, confermando la sua efficacia nel generare una stima affidabile dell’area navigabile. Questo lavoro pone solide basi per futuri progressi nella navigazione e nel controllo delle motociclette autonome.
Development of a navigable area estimation pipeline for an autonomous motorcycle
Prandoni, Luca
2024/2025
Abstract
Motivated by the need to enhance rider safety, this thesis addresses the unique perception challenges of autonomous motorcycles, which differ from four-wheeled vehicles due to complex dynamics like high roll angles during cornering. We present the design, implementation, and experimental validation of a complete perception pipeline for an autonomous motorcycle, aimed at generating a reliable estimation of the navigable area. The proposed perception pipeline is composed of three main components. First, a semantic segmentation module based on a Convolutional Neural Network (CNN) was adapted to handle the motorcycle’s roll dynamics. A Roll Augmentation training strategy was identified as the most effective solution to enhance robustness in high-roll scenarios. The network was then retrained for binary segmentation and fine-tuned on a custom dataset, achieving accurate road and obstacle identification on the testing ground. Second, an Inverse Perspective Mapping (IPM) method was developed to generate a Bird’s-Eye View (BEV) of the navigable area. We compared a simple IMU-based approach with an alternative method using LiDAR and the RANSAC algorithm to dynamically estimate the road plane. This IPM-RANSAC approach significantly reduced geometric distortions caused by road banking, slope, and suspension dynamics. Finally, a Multi-Layer Gridmap (MLG) fuses the BEV projections into a unified, spatio-temporal occupancy grid, providing a probabilistic representation of navigability. The entire pipeline was validated offline using data recorded from the experimental motorcycle at the CREA-IT test track under various driving conditions, confirming its effectiveness in generating a reliable navigable area estimation. This work lays a solid foundation for future advancements in autonomous motorcycle navigation and control.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Prandoni_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
54.31 MB
Formato
Adobe PDF
|
54.31 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Prandoni_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
8.51 MB
Formato
Adobe PDF
|
8.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246730