Inkjet printing is a versatile and digitally controlled deposition technique that enables additive, maskless patterning of functional thin films with high spatial precision. In this work, a systematic protocol is developed to evaluate and optimize inkjet printing by comparison with established deposition methods—Organic Molecular Beam Epitaxy (OMBE), molecular spray, spincoating, and dropcasting—representing different degrees of experimental control. Thin films of platinum(II) octaethylporphyrin (PtOEP) were deposited on highly oriented pyrolytic graphite (HOPG), standard quartz, and ultraflat quartz substrates, selected for their technological relevance and distinct surface morphologies. Atomic Force Microscopy (AFM) and Raman spectroscopy were employed to correlate film structure with molecular organization and vibrational response, providing a comprehensive and reliable characterization of the deposited layers. The comparative analysis identifies substrate morphology and solvent evaporation dynamics as the dominant factors governing the final film architecture. Notably, substrate morphology exerts a stronger influence than expected even for relatively thick films, emphasizing the persistence of interfacial effects beyond the early growth stages. Conversely, the effect of solvent evaporation rate on film uniformity and aggregation is consistent with previous literature on porphyrin-based systems. Overall, this study establishes a set of experimental correlations linking deposition dynamics to film organization, confirming that the combined AFM–Raman approach provides an adequate and robust process-oriented characterization of functional thin films. The proposed inkjet protocol provides a robust framework for discriminating morphological similarities and deviations across deposition methods, enabling process-driven optimization of thin-film fabrication. The resulting insights define a reproducible basis for the rational development of inkjet printing protocols, where process control and reliability are prioritized.
La stampa inkjet è una tecnica di deposizione versatile e controllata digitalmente che consente di formare film funzionali in modo additivo, senza maschere e con elevata precisione spaziale. In questo lavoro viene sviluppato un protocollo sistematico per valutare e ottimizzare la stampa inkjet attraverso il confronto con metodi di deposizione consolidati-Organic Molecular Beam Epitaxy (OMBE), molecular spray, spincoating e dropcasting- rappresentativi di diversi livelli di controllo sperimentale. Film sottili di platino(II) octaetilporfirina (PtOEP) sono stati depositati su grafite pirolitica altamente orientata (HOPG), quarzo standard e quarzo ultrapiatto, scelti per la loro rilevanza tecnologica e per le distinte morfologie superficiali. Microscopia a Forza Atomica (AFM) e spettroscopia Raman sono state utilizzate per correlare la struttura del film con l’organizzazione molecolare e la risposta vibrazionale, fornendo una caratterizzazione completa e affidabile degli strati depositati. L’analisi comparativa mostra che la morfologia del substrato e la dinamica di evaporazione del solvente costituiscono i fattori principali che determinano l’architettura finale del film. In particolare, la morfologia del substrato esercita un’influenza più marcata del previsto anche per film relativamente spessi, evidenziando la persistenza di effetti interfacciali oltre le prime fasi di crescita. Al contrario, l’impatto della velocità di evaporazione del solvente su uniformità e aggregazione risulta coerente con quanto riportato in letteratura per sistemi a base di porfirine. Complessivamente, questo studio definisce un insieme di correlazioni sperimentali tra dinamiche di deposizione e organizzazione del film, confermando che l’approccio combinato AFM-Raman fornisce una caratterizzazione solida e orientata al processo. Il protocollo inkjet proposto offre un quadro affidabile per individuare analogie e differenze morfologiche tra le varie tecniche di deposizione, consentendo un’ottimizzazione realmente guidata dai parametri di processo. Le evidenze raccolte stabiliscono una base riproducibile per lo sviluppo razionale di futuri protocolli di stampa inkjet, nei quali il controllo e l’affidabilità del processo rivestono un ruolo centrale.
Quality control of multi-method deposited Pt-Octaethylporphyrin films via a combined AFM-Raman analysis
MOROSINI, BEATRICE
2024/2025
Abstract
Inkjet printing is a versatile and digitally controlled deposition technique that enables additive, maskless patterning of functional thin films with high spatial precision. In this work, a systematic protocol is developed to evaluate and optimize inkjet printing by comparison with established deposition methods—Organic Molecular Beam Epitaxy (OMBE), molecular spray, spincoating, and dropcasting—representing different degrees of experimental control. Thin films of platinum(II) octaethylporphyrin (PtOEP) were deposited on highly oriented pyrolytic graphite (HOPG), standard quartz, and ultraflat quartz substrates, selected for their technological relevance and distinct surface morphologies. Atomic Force Microscopy (AFM) and Raman spectroscopy were employed to correlate film structure with molecular organization and vibrational response, providing a comprehensive and reliable characterization of the deposited layers. The comparative analysis identifies substrate morphology and solvent evaporation dynamics as the dominant factors governing the final film architecture. Notably, substrate morphology exerts a stronger influence than expected even for relatively thick films, emphasizing the persistence of interfacial effects beyond the early growth stages. Conversely, the effect of solvent evaporation rate on film uniformity and aggregation is consistent with previous literature on porphyrin-based systems. Overall, this study establishes a set of experimental correlations linking deposition dynamics to film organization, confirming that the combined AFM–Raman approach provides an adequate and robust process-oriented characterization of functional thin films. The proposed inkjet protocol provides a robust framework for discriminating morphological similarities and deviations across deposition methods, enabling process-driven optimization of thin-film fabrication. The resulting insights define a reproducible basis for the rational development of inkjet printing protocols, where process control and reliability are prioritized.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Morosini_Executive Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.96 MB
Formato
Adobe PDF
|
1.96 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Morosini_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
17.78 MB
Formato
Adobe PDF
|
17.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246747