Despite the fundamental role of Solid–Liquid interfaces in both technological applications and natural processes, a significant gap still exists between the understanding of surfaces properties studied under vacuum, HV, UHV and that of the same surfaces in electrochemical environments. In ultra-high and high vacuum, it is well established that physical confinement, given by natural defects or by vicinal surfaces, can guide and stabilize the adsorption of organic films on metallic substrates. However, it remains unclear whether these effects are preserved once the metallic electrode is brought into contact with an electrolyte. To address this question, this work investigates Pt-Octaethylporphyrin (PtOEP) films deposited by Organic Molecular Beam Epitaxy (OMBE) in HV onto HOPG (used as a calibration sample), flat Au(100), and two vicinal Au(100) surfaces with miscut angles of 3° and 6°, after immersion in a 0.1 M Perchloric acid solution. Electrochemical Scanning Tunneling Microscopy (EC-STM) is the ideal technique for this purpose, as it enables "in situ" imaging of the Solid–Liquid interface at the nanoscale while allowing independent control of the Sample Potential. However, the experimental work revealed major challenges, demonstrating that procedures optimized for HV/UHV cannot be straightforwardly extended to electrochemical conditions. This highlights the need for new experimental paradigms that equally account for the physical and electrochemical forces governing interfacial phenomena. While a molecular monolayer was successfully observed on HOPG, although highly unstable, the PtOEP film was not consistently detected on Gold samples, except in a unique and non representative region. These findings do not allow us to draw definitive conclusions about the role of substrate induced physical confinement at the Solid–Liquid interface, since the strong electrochemical interactions appear to dominate the system’s behaviour and to mask any confinement related effects that might otherwise emerge. Finally, it is observed that although the film deposited in HV does not withstand the electrochemical environment, its prior presence on the substrates provides protection to their morphology, which is otherwise lost in substrates subjected to the same treatments but without deposition.
Nonostante il ruolo fondamentale delle interfacce Solido–Liquido in numerosi ambiti tecnologici e nei processi naturali, esiste ancora un notevole divario tra la conoscenza e comprensione delle proprietà delle superfici in condizioni di Vuoto, Alto Vuoto (HV) e Ultra-Alto Vuoto (UHV) e quella delle stesse superfici in ambiente elettrochimico. In condizioni di vuoto è noto che il confinamento fisico, dovuto alla presenza di difetti naturali o di superfici vicinali, può guidare e stabilizzare l’adsorbimento di film organici su substrati metallici. Tuttavia, non è chiaro se tali effetti vengano mantenuti quando l’elettrodo metallico è posto a contatto con un elettrolita. Per affrontare la questione, nel presente lavoro sono analizzati film di Pt-Octaetilporfirine (PtOEP) depositati tramite “Organic Molecular Beam Epitaxy” (OMBE) in alto vuoto su superfici di HOPG (utilizzato come campione di calibrazione), Au(100) e due superfici vicinali con angoli di miscut di 3°e 6°, successivamente immersi in una soluzione 0.1 M di Acido Perclorico. La Microscopia ad effetto Tunnel in ambiente elettrochimico (EC-STM) rappresenta lo strumento ideale per questo scopo, poiché consente di osservare le caratteristiche dell’interfaccia Solido–Liquido su scala nanometrica, mantenendo un controllo indipendente del potenziale del campione. Tuttavia, il lavoro sperimentale ha evidenziato difficoltà significative, mostrando che le procedure ottimizzate per HV/UHV non possono essere direttamente estese all’ambiente elettrochimico. L’esperienza ha sottolineato la necessità di sviluppare nuovi paradigmi sperimentali che considerino su un piano paritario le forze fisiche ed elettrochimiche che governano i fenomeni interfacciali. Mentre sull’ HOPG è stato osservato un monostrato molecolare, sebbene caratterizzato da elevata instabilità, sui campioni d’Oro il film di PtOEP non è stato rilevato, ad eccezione di un’unica area non rappresentativa delle caratteristiche generali delle superfici. I risultati ottenuti non permettono di trarre conclusioni definitive sul ruolo del confinamento fisico indotto dal substrato all’interfaccia Solido–Liquido, poiché le interazioni elettrochimiche risultano predominanti e mascherano eventuali effetti riconducibili al confinamento stesso. Infine, si osserva che, seppure il film depositato in HV non riesce a resistere all’ambiente elettrochimico, la sua precedente presenza sui substrati porta ad una protezione della morfologia di essi, che in substrati sottoposti agli stessi trattamenti eccetto la deposizione molecolare è persa.
Stability and role of physical confinement of pt-octaethylporphyrin films at the solid-liquid interface: a challenge revealed by EC-STM
Padula, Matilde
2024/2025
Abstract
Despite the fundamental role of Solid–Liquid interfaces in both technological applications and natural processes, a significant gap still exists between the understanding of surfaces properties studied under vacuum, HV, UHV and that of the same surfaces in electrochemical environments. In ultra-high and high vacuum, it is well established that physical confinement, given by natural defects or by vicinal surfaces, can guide and stabilize the adsorption of organic films on metallic substrates. However, it remains unclear whether these effects are preserved once the metallic electrode is brought into contact with an electrolyte. To address this question, this work investigates Pt-Octaethylporphyrin (PtOEP) films deposited by Organic Molecular Beam Epitaxy (OMBE) in HV onto HOPG (used as a calibration sample), flat Au(100), and two vicinal Au(100) surfaces with miscut angles of 3° and 6°, after immersion in a 0.1 M Perchloric acid solution. Electrochemical Scanning Tunneling Microscopy (EC-STM) is the ideal technique for this purpose, as it enables "in situ" imaging of the Solid–Liquid interface at the nanoscale while allowing independent control of the Sample Potential. However, the experimental work revealed major challenges, demonstrating that procedures optimized for HV/UHV cannot be straightforwardly extended to electrochemical conditions. This highlights the need for new experimental paradigms that equally account for the physical and electrochemical forces governing interfacial phenomena. While a molecular monolayer was successfully observed on HOPG, although highly unstable, the PtOEP film was not consistently detected on Gold samples, except in a unique and non representative region. These findings do not allow us to draw definitive conclusions about the role of substrate induced physical confinement at the Solid–Liquid interface, since the strong electrochemical interactions appear to dominate the system’s behaviour and to mask any confinement related effects that might otherwise emerge. Finally, it is observed that although the film deposited in HV does not withstand the electrochemical environment, its prior presence on the substrates provides protection to their morphology, which is otherwise lost in substrates subjected to the same treatments but without deposition.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Padula_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi di Matilde Padula
Dimensione
64.23 MB
Formato
Adobe PDF
|
64.23 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Padula_ExecutiveSummary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary di Matilde Padula
Dimensione
17.66 MB
Formato
Adobe PDF
|
17.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246773