Coherent Raman scattering (CRS) techniques are powerful tools for label-free vibrational imaging of biological samples. The two main CRS techniques are coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS). In SRS, two pulsed beams—pump and Stokes—generate vibrational coherence that leads to depletion of the pump field and gain in the Stokes field. Since the SRS signal occurs at the same wavelengths as the incoming beams and is extremely weak, the detection process requires a lock-in amplifier. Conventional SRS imaging is based on raster scanning, which limits the field of view and slows down acquisition over large tissue areas. Wide-field approaches can reduce acquisition time, but are limited by the low frame rate of cameras, which restricts the modulation frequency and makes the measurement sensitive to excess laser noise, as well as by the fact that it would require the implementation of a lock-in with millions of parallel channels, which is currently unavailable. To overcome these limitations, this thesis introduces a wide-field SRS microscope based on a self-referential detection scheme designed to achieve fast, noise-resistant images. The system spectrally narrows the pump and Stokes pulses, enabling the desired spectral resolution. Precise temporal and spatial overlap between the two pulses is ensured, along with a precise beam size ratio for self-referential detection. For the initial characterization of the system, pump-probe measurements are performed since they are differential measurements (as in SRS) but provide a much stronger signal. Preliminary pump-probe experiments are reported that demonstrate the correct operation of the configuration and validate its potential. These results show that the developed configuration is operational and capable of detecting ultrafast transient signals, providing a solid basis for future wide-field SRS measurements on biological samples.
Le tecniche di diffusione Raman coerente (CRS) sono strumenti potenti per l'imaging vibrazionale label-free di campioni biologici. Le due principali tecniche CRS sono la diffusione Raman anti-Stokes coerente (CARS) e la diffusione Raman stimolata (SRS). Nella SRS, due fasci pulsati - pump e Stokes - generano una coerenza vibrazionale che porta all'esaurimento del campo di pump e al guadagno nel campo Stokes. Poiché il segnale SRS si verifica alle stesse lunghezze d'onda dei fasci in entrata ed è estremamente debole, il processo di rilevamento richiede un amplificatore lock-in. L'imaging SRS convenzionale si basa sulla scansione raster, che limita il campo visivo e rallenta l'acquisizione su aree di tessuto estese. Gli approcci wide-field possono ridurre il tempo di acquisizione, ma sono limitati dalla bassa frequenza dei fotogrammi delle telecamere, che limita la frequenza di modulazione e rende la misurazione sensibile al rumore laser in eccesso, nonché dal fatto che sarebbe necessaria l'implementazione di un lock-in con milioni di canali paralleli, attualmente non disponibile. Per superare queste limitazioni, questa tesi introduce un microscopio SRS wide-field basato su uno schema di rilevamento autoreferenziale progettato per ottenere immagini veloci e resistenti al rumore. Il sistema restringe spettralmente gli impulsi di pump e Stokes, consentendo la risoluzione spettrale desiderata. Viene garantita una precisa sovrapposizione temporale e spaziale tra i due impulsi, insieme a un preciso rapporto di dimensione dei fasci per il rilevamento autoreferenziale. Per la caratterizzazione iniziale del sistema, vengono eseguite misurazioni pump-probe poiché si tratta di misurazioni differenziali (come nell'SRS), ma forniscono un segnale molto più forte. Vengono riportati esperimenti preliminari pump-probe che dimostrano il corretto funzionamento della configurazione e ne convalidano il potenziale. Questi risultati dimostrano che la configurazione sviluppata è operativa e in grado di rilevare segnali transitori ultraveloci, fornendo una solida base per future misurazioni SRS wide-field su campioni biologici.
Development of a wide-field stimulated Raman scattering microscope
IAROCCI, SERENA
2025/2026
Abstract
Coherent Raman scattering (CRS) techniques are powerful tools for label-free vibrational imaging of biological samples. The two main CRS techniques are coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS). In SRS, two pulsed beams—pump and Stokes—generate vibrational coherence that leads to depletion of the pump field and gain in the Stokes field. Since the SRS signal occurs at the same wavelengths as the incoming beams and is extremely weak, the detection process requires a lock-in amplifier. Conventional SRS imaging is based on raster scanning, which limits the field of view and slows down acquisition over large tissue areas. Wide-field approaches can reduce acquisition time, but are limited by the low frame rate of cameras, which restricts the modulation frequency and makes the measurement sensitive to excess laser noise, as well as by the fact that it would require the implementation of a lock-in with millions of parallel channels, which is currently unavailable. To overcome these limitations, this thesis introduces a wide-field SRS microscope based on a self-referential detection scheme designed to achieve fast, noise-resistant images. The system spectrally narrows the pump and Stokes pulses, enabling the desired spectral resolution. Precise temporal and spatial overlap between the two pulses is ensured, along with a precise beam size ratio for self-referential detection. For the initial characterization of the system, pump-probe measurements are performed since they are differential measurements (as in SRS) but provide a much stronger signal. Preliminary pump-probe experiments are reported that demonstrate the correct operation of the configuration and validate its potential. These results show that the developed configuration is operational and capable of detecting ultrafast transient signals, providing a solid basis for future wide-field SRS measurements on biological samples.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Iarocci_Executive Summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
6.54 MB
Formato
Adobe PDF
|
6.54 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Iarocci_Tesi.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
57.73 MB
Formato
Adobe PDF
|
57.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246831