Over the last years, the search for more selective and biologically targeted cancer thera- pies has led to the development of Boron Neutron Capture Therapy (BNCT), a treatment that exploits the nuclear interaction between boron and thermal neutrons to selectively destroy tumor cells while minimizing damage to healthy tissue. The method takes advan- tage of the selective uptake of boron-based compounds by tumor cells; when irradiated with neutrons, these atoms undergo a nuclear capture reaction that produces high-energy particles capable of destroying the malignant cells. Recent progress in accelerator-based neutron sources has significantly expanded BNCT’s clinical feasibility and experimental research. A crucial requirement for BNCT’s full clinical adoption is the ability to monitor, in real time, the dose delivered to the patient during irradiation. The BeNEdiCTE detector is in development to address this challenge, allowing for in-beam monitoring through SPECT imaging of the 478 keV gamma rays emitted in the boron capture reaction. This thesis presents the development and validation of an upgraded electronics architec- ture for the BeNEdiCTE system, designed to sustain high event rates while preserving energy and timing accuracy. To achive these objectives, a new electronic board was de- signed, integrating a complete analog chain that generates an external trigger signal to start the acquisition of an incoming gamma-ray. This signal is largely independent of signal amplitude, thus improving amplitude walk, and significantly cleaner than the pre- vious one, that was generated internally by the ASICs. In addition to hardware redesign, the FPGA firmware was redesigned to introduce a new acquisition logics to enhance event validation and reduce processing time. Experimental results demonstrated a clear improvement in performance: the amplitude walk was reduced from 37 ns to approximately 5 ns, and the average propagation delay decreased from 55 ns to 31 ns. The new board lead to cleaner analog signals thanks to a careful design that separate analog and digital traces, solving a previous problem related to digital cross-talk. The FPGA logic improvements also ensured a reliable discrimination between events, based on their energy, allowing stable operation even at high count rates. ii | Abstract These results confirm that the new analog board and firmware architecture significantly enhance the detector’s capability to operate in realistic BNCT conditions, paving the way for reliable real-time dose monitoring. Future work will focus on testing the system in accelerator-based neutron facilities to evaluate performance in more demanding scenarios. The structure of this thesis is as follows: • Chapter 1 introduces the physical and biological principles of BNCT and the motivation for real time dose monitoring. • Chapter 2 presents the BeNEdiCTE detector and the main components of the SPECT module. • Chapter 3 details the re-design and implementation of the new electronic board and describes the new FPGA code. • Chapter 4 shows experimental results obtained with new developments. • Chapter 5 summarizes the results and outlines future developments.
Negli ultimi anni, la ricerca di terapie oncologiche sempre più selettive e mirate a livello biologico ha portato allo sviluppo della Boron Neutron Capture Therapy (BNCT), un trattamento che sfrutta l’interazione nucleare tra boro e neutroni termici per distruggere selettivamente le cellule tumorali, minimizzando al contempo i danni ai tessuti sani. Il metodo si basa sull’accumulo di composti contenenti boro nelle cellule tumorali; una volta irradiati con neutroni, questi atomi subiscono una reazione di cattura nucleare che produce particelle ad alta energia capaci di distruggere le cellule maligne. I recenti progressi nello sviluppo di sorgenti di neutroni basate su acceleratori hanno notevolmente ampliato la fattibilità clinica e le possibilità di ricerca legate alla BNCT. Un requisito fondamentale per la piena applicazione clinica della BNCT è la possibilità di monitorare in tempo reale la dose rilasciata al paziente durante l’irraggiamento. Il rivelatore BeNEdiCTE è stato sviluppato proprio per a!rontare questa sfida, permettendo un monitoraggio real-time mediante imaging SPECT dei fotoni gamma da 478 keV emessi nella reazione di cattura del boro. Questa tesi presenta lo sviluppo e la validazione di una nuova architettura elettronica per il sistema BeNEdiCTE, progettata per gestire alti rate di eventi mantenendo elevata la precisione energetica e temporale. Per raggiungere questi obiettivi è stata realizzata una nuova scheda elettronica, che integra una catena analogica completa in grado di generare un segnale di trigger esterno per avviare l’acquisizione di un evento gamma in ingresso. Questo segnale risulta ampiamente indipendente dall’ampiezza del segnale stesso, riducendo quindi l’amplitude walk, e risulta significativamente più pulito rispetto al precedente, generato internamente dagli ASIC. Oltre al redesign hardware, il firmware FPGA è stato completamente riprogettato, introducendo una nuova logica di acquisizione finalizzata a migliorare la validazione degli eventi e ridurre i tempi di elaborazione. I risultati sperimentali hanno mostrato un netto miglioramento delle prestazioni: l’amplitude walk è stato ridotto da 37 ns a circa 5 ns, mentre il ritardo medio di propagazione è dimi- nuito da 55 ns a 31 ns. La nuova scheda ha permesso di ottenere segnali analogici più puliti grazie a un’attenta separazione tra le tracce analogiche e digitali, risolvendo un problema di cross-talk digitale presente nella versione precedente. Le migliorie introdotte nella log- ica FPGA hanno inoltre garantito una discriminazione affidabile degli eventi in base alla loro energia, consentendo un funzionamento stabile anche ad alti rate di conteggio. I risultati ottenuti confermano che la nuova scheda analogica e l’architettura firmware sviluppata migliorano significativamente la capacità del rivelatore di operare in condizioni realistiche di BNCT, aprendo la strada a un monitoraggio in tempo reale della dose più affidabile. I futuri sviluppi prevedono la sperimentazione del sistema in facility basate su acceleratori, al fine di valutarne le prestazioni in scenari più impegnativi. La struttura di questa tesi è organizzata come segue: • Capitolo 1 introduce i principi fisici e biologici della BNCT e le motivazioni per il monitoraggio in tempo reale della dose; • Capitolo 2 presenta il rivelatore BeNEdiCTE e i principali componenti del modulo SPECT; • Capitolo 3 descrive la riprogettazione e l’implementazione della nuova scheda elet- tronica e illustra il nuovo codice FPGA; • Capitolo 4 mostra i risultati sperimentali ottenuti con i nuovi sviluppi; • Capitolo 5 riassume i risultati e delinea i possibili sviluppi futuri.
Design of a trigger and energy discrimination circuit for high-rate operations of a detector for BNCT dose monitoring
VESCIO, LORENZO
2024/2025
Abstract
Over the last years, the search for more selective and biologically targeted cancer thera- pies has led to the development of Boron Neutron Capture Therapy (BNCT), a treatment that exploits the nuclear interaction between boron and thermal neutrons to selectively destroy tumor cells while minimizing damage to healthy tissue. The method takes advan- tage of the selective uptake of boron-based compounds by tumor cells; when irradiated with neutrons, these atoms undergo a nuclear capture reaction that produces high-energy particles capable of destroying the malignant cells. Recent progress in accelerator-based neutron sources has significantly expanded BNCT’s clinical feasibility and experimental research. A crucial requirement for BNCT’s full clinical adoption is the ability to monitor, in real time, the dose delivered to the patient during irradiation. The BeNEdiCTE detector is in development to address this challenge, allowing for in-beam monitoring through SPECT imaging of the 478 keV gamma rays emitted in the boron capture reaction. This thesis presents the development and validation of an upgraded electronics architec- ture for the BeNEdiCTE system, designed to sustain high event rates while preserving energy and timing accuracy. To achive these objectives, a new electronic board was de- signed, integrating a complete analog chain that generates an external trigger signal to start the acquisition of an incoming gamma-ray. This signal is largely independent of signal amplitude, thus improving amplitude walk, and significantly cleaner than the pre- vious one, that was generated internally by the ASICs. In addition to hardware redesign, the FPGA firmware was redesigned to introduce a new acquisition logics to enhance event validation and reduce processing time. Experimental results demonstrated a clear improvement in performance: the amplitude walk was reduced from 37 ns to approximately 5 ns, and the average propagation delay decreased from 55 ns to 31 ns. The new board lead to cleaner analog signals thanks to a careful design that separate analog and digital traces, solving a previous problem related to digital cross-talk. The FPGA logic improvements also ensured a reliable discrimination between events, based on their energy, allowing stable operation even at high count rates. ii | Abstract These results confirm that the new analog board and firmware architecture significantly enhance the detector’s capability to operate in realistic BNCT conditions, paving the way for reliable real-time dose monitoring. Future work will focus on testing the system in accelerator-based neutron facilities to evaluate performance in more demanding scenarios. The structure of this thesis is as follows: • Chapter 1 introduces the physical and biological principles of BNCT and the motivation for real time dose monitoring. • Chapter 2 presents the BeNEdiCTE detector and the main components of the SPECT module. • Chapter 3 details the re-design and implementation of the new electronic board and describes the new FPGA code. • Chapter 4 shows experimental results obtained with new developments. • Chapter 5 summarizes the results and outlines future developments.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Vescio_Executive Summary.pdf
non accessibile
Dimensione
1.53 MB
Formato
Adobe PDF
|
1.53 MB | Adobe PDF | Visualizza/Apri |
|
Vescio_Thesis_12_2025.pdf
non accessibile
Dimensione
12.12 MB
Formato
Adobe PDF
|
12.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246936