Dielectric elastomers are electroactive polymers that, thanks to their versatility, find applications across multiple engineering fields. This thesis reports the state of art on the main types of these materials, acrylics, silicones and thermoplastic polyurethanes, highlighting their strengths and weaknesses. To identify the most suitable materials for aerospace applications, six representative candidates from different classes were selected based on their relevance in literature. The selection required the introduction of an index of merit, designed to favor materials offering the best compromise between electrical and elastic properties and to penalize those with higher dielectric losses. These parameters are critical in the aerospace context, where mass and available space are the main constraints. Accounting also for sustainability, availability and material cost, Ecoflex 00-30 was selected. To characterize the behavior of the chosen material and assess its viscoelastic properties, the silicone underwent rheological and tensile tests on laboratory-prepared specimens. In parallel, a numerical model was developed based on a large-deformation (Gent) model formulated in weak form and implemented in GetFEM. Code verification was performed using the Method of Manufactured Solutions and convergence studies in order to ensure numerical accuracy. The model predicts the displacement response as a function of the applied voltage; the electromechanical response is then compared with experimental measurements. The thesis concludes by proposing extensions to the present work, such as incorporating viscoelastic effects into the mathematical model and optimizing electrodes for boundary-layer control applications.
Gli elastomeri dielettrici sono polimeri elettroattivi che, grazie alla loro versatilità, trovano impiego in molteplici ambiti dell’ingegneria. Questa tesi riporta lo stato dell’arte sui principali tipi di questi materiali, acrilati, siliconi, poliuretani termoplastici, illustrandone pregi e difetti. Per individuare il materiale idoneo alle applicazioni aerospaziali, sono stati selezionati sei materiali rappresentativi delle diversi classi, in base alla loro rilevanza in letteratura. La scelta ha richiesto l’introduzione di un indice di merito che privilegia i materiali con il miglior compromesso tra proprietà elettriche ed elastiche e penalizza quelli con maggiori perdite dielettriche. Questi parametri risultano cruciali nel contesto aerospaziale, dove massa e spazio disponibile sono fattori determinanti. Considerando anche sostenibilità, reperibilità e costi del materiale, la scelta è ricaduta su Ecoflex 00-30. Per caratterizzare il comportamento del materiale scelto e valutarne le proprietà viscoelastiche, il silicone è stato sottoposto a prove reologiche e a trazione su provini preparati in laboratorio. Parallelamente, è stato sviluppato un codice numerico basato su un modello per grandi deformazioni (Gent), espresso in forma debole e implementato in GetFEM. La verifica del codice è stata effettuata con il Method of Manufactured Solutions e studi di convergenza al fine di garantire l’accuratezza numerica. Il modello predice l’andamento degli spostamenti in funzione della tensione applicata; la risposta elettromeccanica viene poi confrontata con le misure sperimentali. La tesi si conclude proponendo estensioni al lavoro svolto, come l’integrazione della viscosità nel modello matematico e l’ottimizzazione degli elettrodi per applicazioni di controllo di strato limite.
Dielectric elastomer actuators : working principle and modeling
BOLETTI, MARCO
2024/2025
Abstract
Dielectric elastomers are electroactive polymers that, thanks to their versatility, find applications across multiple engineering fields. This thesis reports the state of art on the main types of these materials, acrylics, silicones and thermoplastic polyurethanes, highlighting their strengths and weaknesses. To identify the most suitable materials for aerospace applications, six representative candidates from different classes were selected based on their relevance in literature. The selection required the introduction of an index of merit, designed to favor materials offering the best compromise between electrical and elastic properties and to penalize those with higher dielectric losses. These parameters are critical in the aerospace context, where mass and available space are the main constraints. Accounting also for sustainability, availability and material cost, Ecoflex 00-30 was selected. To characterize the behavior of the chosen material and assess its viscoelastic properties, the silicone underwent rheological and tensile tests on laboratory-prepared specimens. In parallel, a numerical model was developed based on a large-deformation (Gent) model formulated in weak form and implemented in GetFEM. Code verification was performed using the Method of Manufactured Solutions and convergence studies in order to ensure numerical accuracy. The model predicts the displacement response as a function of the applied voltage; the electromechanical response is then compared with experimental measurements. The thesis concludes by proposing extensions to the present work, such as incorporating viscoelastic effects into the mathematical model and optimizing electrodes for boundary-layer control applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Boletti_executive summary.pdf
accessibile in internet per tutti a partire dal 19/11/2026
Descrizione: Executive Summary
Dimensione
355.75 kB
Formato
Adobe PDF
|
355.75 kB | Adobe PDF | Visualizza/Apri |
|
2025_12_Boletti_Tesi.pdf
accessibile in internet per tutti a partire dal 20/11/2026
Descrizione: Tesi
Dimensione
15.01 MB
Formato
Adobe PDF
|
15.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246940