The textile and furniture industries still rely heavily on the use of synthetic yarns and fibres derived from petrochemicals, which are valued for their strength, versatility and low cost. However, the production and use of these materials have a significant environmental impact due to high energy consumption, CO₂ emissions and the generation of non-biodegradable waste and microplastics. In this scenario, the search for bio-based and circular alternatives is a strategic necessity for the future of sustainable design, capable of combining technical performance, aesthetic quality and environmental responsibility. The thesis presents the development of NÍMA: Wet-extruded alginate bio-composite filament with furniture by-products for woven elements, from the Greek "νῆμα", meaning “thread”, which becomes a metaphor for the process itself: an approach in which material experimentation and the enhancement of natural resources are intertwined in a web of research and transformation. The project proposes the creation of an experimental material obtained through a cold extrusion process, which uses sodium alginate as a bio-based matrix and incorporates waste from the furniture industry, in particular sawdust and cotton fibres. NÍMA is a bio-composite intended for the production of woven elements for furniture design and fits into the circular design framework. The experimental phase was based on the main scientific evidence relating to the production of biopolymer-based filaments, investigating the role of ionotropic coagulation baths and chitosan treatments in determining the cohesion, flexibility and hydrophobicity of the material. The integration of organic waste, in particular cotton fibres and sawdust, has been shown not to compromise the structural properties of the alginate matrix, but to modify its mechanical behaviour and aesthetic yield in a controlled manner, making the filament suitable for weaving and braiding processes. The experimental results confirm the possibility of obtaining flexible, cohesive and visually homogeneous filaments that are compatible with the aesthetic and structural requirements of contemporary design. The application of the material in design contexts has also highlighted the aesthetic and functional consistency of the yarn and its potential for transfer from the laboratory to the production scale. Future research perspectives concern the optimization of the material’s durability - particularly with respect to water, humidity, and heat - and the development of a more automated and stable extrusion process capable of producing continuous filaments compatible with advanced textile technologies such as 3D knitting. In parallel, it will be necessary to expand mechanical and thermal characterization tests, end-of-life testing and environmental assessment in order to consolidate knowledge of the material and support the development of a scalable industrial production chain. These advancements will enable the material’s broader adoption within the furniture sector, extending its use to a more diverse range of products and components.
L’industria del tessile e dell’arredo dipendono ancora fortemente dall’impiego di filati e fibre sintetiche di origine petrolchimica, apprezzate per la loro resistenza, versatilità e basso costo. Tuttavia, la produzione e l’utilizzo di tali materiali comportano rilevanti impatti ambientali, legati all’elevato consumo energetico, alle emissioni di CO₂ e alla generazione di rifiuti non biodegradabili e microplastiche. In questo scenario, la ricerca di alternative bio-based e circolari rappresenta una necessità strategica per il futuro del progetto sostenibile, capace di coniugare prestazioni tecniche, qualità estetica e responsabilità ambientale. La tesi presenta lo sviluppo di NÍMA: Wet-extruded alginate bio-composite filament with furniture by-products for woven elements, dal greco "νῆμα", ovvero “filo”, che diventa metafora del processo stesso: un approccio in cui sperimentazione materica e valorizzazione delle risorse naturali si intrecciano in una trama di ricerca e trasformazione. Il progetto propone la realizzazione di un materiale sperimentale ottenuto attraverso un processo di estrusione a freddo, che utilizza alginato di sodio come matrice bio-based e integra scarti provenienti dal settore dell’arredo, in particolare segatura e fibre di cotone. NÍMA si configura come un bio-composito destinato alla produzione di elementi intrecciati per il furniture design e si inserisce nel quadro del design circolare. La fase sperimentale si è basata sulle principali evidenze scientifiche relative alla produzione di filamenti a base di biopolimeri, indagando il ruolo dei bagni di coagulazione ionotropica e dei trattamenti con chitosano nel determinare la coesione, la flessibilità e l'idrofobicità del materiale. L’integrazione di scarti organici, in particolare fibre di cotone e segatura, ha dimostrato di non compromettere le proprietà strutturali della matrice di alginato, ma di modificarne in modo controllato il comportamento meccanico e la resa estetica, rendendo il filamento idoneo ai processi di tessitura e intreccio. I risultati sperimentali confermano la possibilità di ottenere filati flessibili, coesi e visivamente omogenei, compatibili con le esigenze estetiche e strutturali del design contemporaneo. L’applicazione del materiale in contesti progettuali ha inoltre evidenziato la coerenza estetico-funzionale del filato e il suo potenziale di trasferimento dalla scala laboratoriale a quella produttiva. Prospettive future della ricerca riguardano l’ottimizzazione della durabilità del materiale - in particolare nei confronti di acqua, umidità e calore - e lo sviluppo di un processo di estrusione più automatizzato e stabile, in grado di produrre filati continui compatibili con tecnologie tessili avanzate come il 3D knitting. Parallelamente, sarà necessario ampliare le prove di caratterizzazione meccanica e termica, prove relative al fine vita e valutazione ambientale, così da consolidare la conoscenza del materiale e supportare la costruzione di una filiera produttiva scalabile a livello industriale. Questi sviluppi permetteranno di ampliare l’impiego del materiale all’interno del settore dell’arredo, estendendolo a una gamma più diversificata di prodotti e componenti.
NIMA: wet-extruded alginate bio-composite filament with forniture by-products for woven elements
Ciccia, Sofia Maria
2024/2025
Abstract
The textile and furniture industries still rely heavily on the use of synthetic yarns and fibres derived from petrochemicals, which are valued for their strength, versatility and low cost. However, the production and use of these materials have a significant environmental impact due to high energy consumption, CO₂ emissions and the generation of non-biodegradable waste and microplastics. In this scenario, the search for bio-based and circular alternatives is a strategic necessity for the future of sustainable design, capable of combining technical performance, aesthetic quality and environmental responsibility. The thesis presents the development of NÍMA: Wet-extruded alginate bio-composite filament with furniture by-products for woven elements, from the Greek "νῆμα", meaning “thread”, which becomes a metaphor for the process itself: an approach in which material experimentation and the enhancement of natural resources are intertwined in a web of research and transformation. The project proposes the creation of an experimental material obtained through a cold extrusion process, which uses sodium alginate as a bio-based matrix and incorporates waste from the furniture industry, in particular sawdust and cotton fibres. NÍMA is a bio-composite intended for the production of woven elements for furniture design and fits into the circular design framework. The experimental phase was based on the main scientific evidence relating to the production of biopolymer-based filaments, investigating the role of ionotropic coagulation baths and chitosan treatments in determining the cohesion, flexibility and hydrophobicity of the material. The integration of organic waste, in particular cotton fibres and sawdust, has been shown not to compromise the structural properties of the alginate matrix, but to modify its mechanical behaviour and aesthetic yield in a controlled manner, making the filament suitable for weaving and braiding processes. The experimental results confirm the possibility of obtaining flexible, cohesive and visually homogeneous filaments that are compatible with the aesthetic and structural requirements of contemporary design. The application of the material in design contexts has also highlighted the aesthetic and functional consistency of the yarn and its potential for transfer from the laboratory to the production scale. Future research perspectives concern the optimization of the material’s durability - particularly with respect to water, humidity, and heat - and the development of a more automated and stable extrusion process capable of producing continuous filaments compatible with advanced textile technologies such as 3D knitting. In parallel, it will be necessary to expand mechanical and thermal characterization tests, end-of-life testing and environmental assessment in order to consolidate knowledge of the material and support the development of a scalable industrial production chain. These advancements will enable the material’s broader adoption within the furniture sector, extending its use to a more diverse range of products and components.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Ciccia.pdf
solo utenti autorizzati a partire dal 19/11/2026
Descrizione: testo della tesi
Dimensione
25.84 MB
Formato
Adobe PDF
|
25.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/246948