The growing development of renewable energy and the urgent need to reduce greenhouse gas emissions, together with the continuous increase in energy consumption within cities (Kannan & Vakeesan, 2016), which are responsible for over 40% of global energy use (Basher et al., 2022), have led to a significant rise in the number of photovoltaic systems installed in urban environments. This trend has been further reinforced by new regulations aimed at achieving goals such as NZEB (Nearly Zero Energy Buildings). However, the widespread adoption of these technologies in cities faces barriers related to aesthetic acceptance and urban planning regulations (Slooff et al., 2017), which require a high degree of visual integration. Therefore, an innovative design approach to photovoltaic integration within buildings is needed. This research addresses this challenge through the design of surface textures applied to the front glass of BIPV (Building Integrated Photovoltaics) modules. The objective is not only to identify the optimal balance between energy performance and aesthetic quality but also to define a geometrically optimized configuration capable of serving as a base platform for applying different colour variations, with a view toward industrialization and scalability of the production process. Following a critical analysis of the state of the art and the main technologies for module customization, a series of design proposals based on point or cell matrices were developed. Their effectiveness was then investigated in relation also to optical and visual perception principles. The design phase involved the generation of various patterns, followed by their prototyping, first digitally, trough virtual simulation tools, and then physically through the production, in collaboration with Suncol, of 30 solar panels samples featuring printed glass textures. These prototypes enabled experimental verification of the initial hypotheses. The research therefore proposes an integrated approach to photovoltaic design, in which the module’s aesthetic design becomes a tool to overcome the traditional trade-off between efficiency and appearance. This approach supports the broader diffusion of BIPV systems in urban contexts and opens new perspectives for the development of energy-efficient architectures that are both sustainable and culturally acceptable.
Il crescente sviluppo delle energie rinnovabili e l’urgenza di ridurre le emissioni di gas serra, unitamente al costante aumento dei consumi energetici nelle città (Kannan & Vakeesan, 2016), che sono responsabili per oltre il 40% dei consumi di energia a livello globale (Basher et al., 2022), ha portato ad un aumento del numero di impianti fotovoltaici presenti all’interno dei contesti urbani, anche a seguito delle nuove normative istituite per raggiungere obiettivi come quelli degli NZEB (Nearly Zero Energy Buildings). Tuttavia, la diffusione di tali tecnologie nelle città si scontra con barriere legate all’accettazione estetica e alle normative urbanistiche (Slooff et al., 2017), che richiedono un elevato grado di integrazione visiva. È necessario, dunque, un approccio innovativo alla progettazione del fotovoltaico per l’integrazione con gli edifici. La presente ricerca affronta questa sfida attraverso la progettazione di texture applicabili al vetro frontale di moduli fotovoltaici BIPV, con l’obiettivo non solo di individuare il miglior equilibrio tra prestazioni energetiche e qualità estetica, ma anche di definire una configurazione ottimale a livello geometrico capace di diventare una piattaforma di base su cui applicare diverse colorazioni, in un’ottica di industrializzazione e scalabilità del processo produttivo. Dopo un’analisi critica dello stato dell’arte e delle principali tecnologie di colorazione e personalizzazione dei moduli, sono state sviluppate una serie di proposte progettuali basate su matrici di punti o celle, la cui efficacia è stata indagata anche in relazione a principi di ottica e percezione visiva. Il lavoro progettuale ha dunque previsto la generazione di diversi pattern, seguita dalla loro prototipazione prima in digitale, con strumenti di simulazione, e poi tramite la realizzazione, in collaborazione con Suncol, di 30 campioni fisici di pannelli solari sui quali sono state applicate le texture tramite tecniche di stampa su vetro, dando vita a prototipi che hanno consentito la verifica sperimentale delle ipotesi iniziali. La ricerca propone dunque un approccio integrato alla progettazione dei pannelli fotovoltaici, in cui il design del modulo diventa strumento per superare il compromesso tra estetica ed efficienza, favorendo una maggiore diffusione del BIPV nelle città e aprendo nuove prospettive di sviluppo per architetture energeticamente sostenibili e culturalmente accettabili.
Progettazione di texture per la valorizzazione estetica e l'ottimizzazione energetica degli impianti fotovoltaici building integrated
ROMANO, BRANDO
2024/2025
Abstract
The growing development of renewable energy and the urgent need to reduce greenhouse gas emissions, together with the continuous increase in energy consumption within cities (Kannan & Vakeesan, 2016), which are responsible for over 40% of global energy use (Basher et al., 2022), have led to a significant rise in the number of photovoltaic systems installed in urban environments. This trend has been further reinforced by new regulations aimed at achieving goals such as NZEB (Nearly Zero Energy Buildings). However, the widespread adoption of these technologies in cities faces barriers related to aesthetic acceptance and urban planning regulations (Slooff et al., 2017), which require a high degree of visual integration. Therefore, an innovative design approach to photovoltaic integration within buildings is needed. This research addresses this challenge through the design of surface textures applied to the front glass of BIPV (Building Integrated Photovoltaics) modules. The objective is not only to identify the optimal balance between energy performance and aesthetic quality but also to define a geometrically optimized configuration capable of serving as a base platform for applying different colour variations, with a view toward industrialization and scalability of the production process. Following a critical analysis of the state of the art and the main technologies for module customization, a series of design proposals based on point or cell matrices were developed. Their effectiveness was then investigated in relation also to optical and visual perception principles. The design phase involved the generation of various patterns, followed by their prototyping, first digitally, trough virtual simulation tools, and then physically through the production, in collaboration with Suncol, of 30 solar panels samples featuring printed glass textures. These prototypes enabled experimental verification of the initial hypotheses. The research therefore proposes an integrated approach to photovoltaic design, in which the module’s aesthetic design becomes a tool to overcome the traditional trade-off between efficiency and appearance. This approach supports the broader diffusion of BIPV systems in urban contexts and opens new perspectives for the development of energy-efficient architectures that are both sustainable and culturally acceptable.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Romano.pdf
solo utenti autorizzati a partire dal 18/11/2026
Descrizione: Tesi di Laurea Magistrale in Integrated Product Design
Dimensione
33.92 MB
Formato
Adobe PDF
|
33.92 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247004