The thesis investigates the use of waste materials derived from steel slag as a partial replacement for natural aggregates in concrete. Using these materials in concrete helps conserve natural resources like sand and gravel, and offers an effective way to manage steel industry waste, addressing important environmental concerns. A sustainable concrete must be durable over time, therefore the long-term behavior of the mixtures is investigated through laboratory tests on creep and shrinkage. An extensive experimental campaign is conducted, including tests on compression, tension, shrinkage, and creep. Four mixes are studied: the reference mixture (concrete with natural aggregates), one mix with 10% replacement of natural aggregates with steel slag, another with 20%, and one with 30% replacement. The results demonstrate that the use of these aggregates represents a valid alternative to natural ones, as the mechanical and long-term behavior of these mixtures is similar to that of traditional concrete and, in some cases, even better. Furthermore, the applicability of the models present in design codes (Euro Code 2 and Model Code 2020) to this type of concrete is investigated. In the second part of the thesis, a constitutive model for time-dependent analysis that includes nonlinear creep and fracture is developed. The creep and shrinkage model is derived from the standards (EC2 and MC2020) and coupled with a damage model. The model is based on a Rate-type Creep Approach, which enables a more computationally efficient determination of the constitutive relationship. The proposed constitutive law was then implemented in Abaqus using a UMAT subroutine to evaluate the structural behavior of a prestressed box girder bridge. In addition, the proposed constitutive law was used to simulate the fracture tests carried out on the material under investigation. Finally, a modification is proposed to further reduce the number of internal variables by considering an aging Kelvin model (instead of a chain), in which the viscosity function is assumed to be time-dependent and calibrated to fit well the compliance functions.
La tesi indaga l’uso di scarti provenienti da scorie di acciaierie in sostituzione parziale di aggregati naturali per calcestruzzi. L’utilizzo di questi materiali nel calcestruzzo riduce il consumo di risorse naturali come sabbia e ghiaia e offre una soluzione efficiente per lo smaltimento dei rifiuti delle acciaierie, rispondendo così alle attuali esigenze ambientali. Per garantire la durabilità quando si utilizzano aggregati riciclati, sono state eseguite prove di creep e ritiro in laboratorio. La campagna sperimentale ha incluso test di compressione, trazione, ritiro e comportamento viscoso. Sono stati investigate quattro miscele: una di riferimento (calcestruzzo con aggregati naturali), una miscela con il 10% di sostituzione di aggregati da scorie di acciaieria, una con il 20% e una con il 30%. I risultati dimostrano che l’ultizzo di questi aggregati rappresenta una valida alternativa a quelli naturali, in quanto il comportamento meccanico e a lungo termine di queste miscele è simile a quello del calcestruzzo tradizionale e, in alcuni casi, perfino migliore. Inoltre, si è investigata l’applicabilità dei modelli presenti nei codici di progettazione (EuroCodice2 e ModelCode2020) a questo tipo di calcestruzzo. Nella seconda parte della tesi viene sviluppato un modello costitutivo per l’analisi nel tempo del calcestruzzo, che include creep non lineare e frattura. Il modello di creep e ritiro è derivato dalle normative (EuroCodice2 e ModelCode2020) ed è accoppiato con un modello di danno. Il modello si basa su un approccio di tipo "rate-type", che consente una implementazione numerica più efficiente dal punto di vista computazionale del legame costitutivo. La legge costitutiva proposta è stata quindi implementata in Abaqus tramite una subroutine UMAT per valutare il comportamento strutturale di un ponte a cassone precompresso. Inoltre, la legge costitutiva proposta è stata utilizzata per simulate i test di frattura effeuuate sul materiale in studio. Infine, viene proposta una modifica per ridurre ulteriormente il numero di variabili interne, considerando un modello di Kelvin invecchiato (anziché una catena), in cui si assume che la funzione di viscosità sia dipendente dal tempo e calibrata per adattarsi adeguatamente alle funzioni di conformità.
Investigation of creep and shrinkage in concrete with recycled aggregates: experimental characterization and numerical modeling
Puppo, Federica;ODESCALCHI, GIORGIA
2024/2025
Abstract
The thesis investigates the use of waste materials derived from steel slag as a partial replacement for natural aggregates in concrete. Using these materials in concrete helps conserve natural resources like sand and gravel, and offers an effective way to manage steel industry waste, addressing important environmental concerns. A sustainable concrete must be durable over time, therefore the long-term behavior of the mixtures is investigated through laboratory tests on creep and shrinkage. An extensive experimental campaign is conducted, including tests on compression, tension, shrinkage, and creep. Four mixes are studied: the reference mixture (concrete with natural aggregates), one mix with 10% replacement of natural aggregates with steel slag, another with 20%, and one with 30% replacement. The results demonstrate that the use of these aggregates represents a valid alternative to natural ones, as the mechanical and long-term behavior of these mixtures is similar to that of traditional concrete and, in some cases, even better. Furthermore, the applicability of the models present in design codes (Euro Code 2 and Model Code 2020) to this type of concrete is investigated. In the second part of the thesis, a constitutive model for time-dependent analysis that includes nonlinear creep and fracture is developed. The creep and shrinkage model is derived from the standards (EC2 and MC2020) and coupled with a damage model. The model is based on a Rate-type Creep Approach, which enables a more computationally efficient determination of the constitutive relationship. The proposed constitutive law was then implemented in Abaqus using a UMAT subroutine to evaluate the structural behavior of a prestressed box girder bridge. In addition, the proposed constitutive law was used to simulate the fracture tests carried out on the material under investigation. Finally, a modification is proposed to further reduce the number of internal variables by considering an aging Kelvin model (instead of a chain), in which the viscosity function is assumed to be time-dependent and calibrated to fit well the compliance functions.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Odescalchi_Puppo.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
107.38 MB
Formato
Adobe PDF
|
107.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247061