Reducing the energy consumption of vehicles is now a key goal for transport sustainability and efficiency. Each vehicle needs energy to overcome resistive forces such as aerodynamic drag, rolling resistance, internal friction, gravity, and inertia. Tires contribute to the total resistance, with estimates around 25%. To reduce the aerodynamic resistance of a tire, it is important to study the effect of the tread pattern and the tire deformation, which is influenced by centrifugal force and vertical load. The structural FEA simulations used by Pirelli Tyre S.p.A. model the tire behavior. Starting from the 2D cross-section of the tire mold, they can obtain a complete 3D deformed geometry of the tire with detailed tread features. To get a model detailed enough for CFD simulations while keeping computational costs reasonable, FEA is performed on the 2D section and then revolved axially to obtain the full tire. However, this process loses the non-axisymmetric features of the tire. This thesis focuses on this issue by developing a morphing technique based on interpolation with RBF and TPS kernels, which acts as a bridge between a mesh generated by FEA and one suitable for CFD. For aerodynamic simulations, a hybrid method called MRFg[12] is used. It combines the advantages of different techniques such as Rotating Wall Boundary Conditions (RWBC), Moving Reference Frame (MRF), and Sliding Mesh (SM). The goal is to propose a methodology that allows CFD simulations of tires, including nonaxisymmetric features, starting from FEM simulations of an axisymmetric tire, without requiring complex and expensive full 3D FEM analyses. The wheel model used in this work is the DrivAER wheel, an open-source model developed by TUM.
Ridurre il consumo energetico dei veicoli è oggi un obiettivo chiave per la sostenibilità e l’efficienza dei trasporti. Ogni veicolo richiede energia per superare le forze resistive: resistenza aerodinamica, resistenza al rotolamento, attrito interno, forze gravitazionali e inerziali. Gli pneumatici contribuiscono con circa il 25% della resistenza totale. Per ridurre la resistenza aerodinamica di una gomma, tra i vari fattori, è opportuno studiare con attenzione l’effetto del battistrada e della deformazione dello pneumatico, il quale è sottoposto a forza centrifuga e a carico verticale. Le simulazioni FEA strutturali utilizzate da Pirelli Tyre S.p.a. modellano il comportamento dello pneumatico. Queste riescono ad ottenere una geometria completa 3D dello pneumatico in deformata con dettagli del battistrada, partendo dalla semi-sezione 2D dello pneumatico nello stampo. Per poter ottenere modelli sufficientemente dettagliati per una simulazione CFD, mantenendo gestibili i costi computazionali, è necessario eseguire le simulazioni FEA sulla sezione 2D, e solo successivamente ottenere lo pneumatico completo tramite una rivoluzione assiale, andando inevitabilmente a perdere la descrizione delle feature non-assialsimmetriche. Questo lavoro di tesi si inserisce in questo contesto ideando una tecnica di morphing, basata su un interpolazione con RFB e kernel TPS, che possa fungere da “ponte” tra una mesh generata da una FEA e una mesh adatta a una CFD. Per le simulazioni aerodinamiche verrà utilizzato un metodo ibrido: il MRFg[12], che combina i vantaggi di diverse tecniche, quali Rotating Wall Boundary Conditions (RWBC), Moving Reference Frame (MRF) e Sliding Mesh (SM). L’obiettivo è proporre una metodologia che consenta simulazioni CFD degli pneumatici, comprese le caratteristiche non-assialsimmetriche, partendo da simulazioni FEM di uno pneumatico assialsimmetrico, senza richiedere analisi FEA complete 3D molto complesse e costose in termini computazionali. Come modello di ruota è stata usata quella del DrivAER, modello open source sviluppato dal TUM.
Morphing-based integration of FEA and CFD for aerodynamic investigation of tire tread features
Campanella, Massimo
2024/2025
Abstract
Reducing the energy consumption of vehicles is now a key goal for transport sustainability and efficiency. Each vehicle needs energy to overcome resistive forces such as aerodynamic drag, rolling resistance, internal friction, gravity, and inertia. Tires contribute to the total resistance, with estimates around 25%. To reduce the aerodynamic resistance of a tire, it is important to study the effect of the tread pattern and the tire deformation, which is influenced by centrifugal force and vertical load. The structural FEA simulations used by Pirelli Tyre S.p.A. model the tire behavior. Starting from the 2D cross-section of the tire mold, they can obtain a complete 3D deformed geometry of the tire with detailed tread features. To get a model detailed enough for CFD simulations while keeping computational costs reasonable, FEA is performed on the 2D section and then revolved axially to obtain the full tire. However, this process loses the non-axisymmetric features of the tire. This thesis focuses on this issue by developing a morphing technique based on interpolation with RBF and TPS kernels, which acts as a bridge between a mesh generated by FEA and one suitable for CFD. For aerodynamic simulations, a hybrid method called MRFg[12] is used. It combines the advantages of different techniques such as Rotating Wall Boundary Conditions (RWBC), Moving Reference Frame (MRF), and Sliding Mesh (SM). The goal is to propose a methodology that allows CFD simulations of tires, including nonaxisymmetric features, starting from FEM simulations of an axisymmetric tire, without requiring complex and expensive full 3D FEM analyses. The wheel model used in this work is the DrivAER wheel, an open-source model developed by TUM.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Campanella_Thesis.pdf
accessibile in internet per tutti
Descrizione: Thesis - Campanella Massimo - 2025_12
Dimensione
19.85 MB
Formato
Adobe PDF
|
19.85 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Campanella_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary - Campanella Massimo - 2025_12
Dimensione
1.56 MB
Formato
Adobe PDF
|
1.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247072