Ammonia is conventionally produced through the Haber-Bosch process, which relies on hydrogen derived from fossil fuels and is therefore associated with CO2 emissions. To decarbonize this route, renewable hydrogen produced by water electrolysis has been explored. Among electrolyzer technologies, the Solid Oxide Electrolyzer (SOE) is particularly promising due to its high-temperature operation with superheated steam, which improves thermodynamic efficiency. This thesis work investigates the energy integration of an SOE with the Haber-Bosch synthesis loop to enhance overall plant efficiency through process heat recovery. A small-scale green ammonia production plant is simulated in UniSim® Design R500, where the electrolyzer behavior is modeled through a dedicated steady-state zero-dimensional (0D) model that captures its intrinsic performance. The proposed configuration integrates a Heat Recovery Steam Generator (HRSG) downstream of the ammonia reactor, allowing the recovery of reaction heat to supply a significant portion of the steam required by the electrolyzer. This thermal coupling reduces the energy demand of the hydrogen production section, thereby enhancing the efficiency of the SOE system and lowering the specific electrical energy consumption for hydrogen generation. At the plant level, the integration strategy results in an overall improvement of energy performance, characterized by higher efficiency and reduced power requirements. The techno-economic assessment confirms that these enhancements contribute to a lower Levelized Cost of Ammonia (LCOA), highlighting the effectiveness and sustainability of coupling SOE-based hydrogen production with the Haber-Bosch synthesis loop for renewable ammonia generation.
L’ammoniaca è tradizionalmente prodotta tramite il processo Haber-Bosch (HB), basato su idrogeno derivato da fonti fossili, dunque associato ad emissioni di CO2. Con l’obiettivo di decarbonizzarne la sintesi, l’idrogeno rinnovabile prodotto mediante elettrolisi dell’acqua rappresenta una valida soluzione. Tra le tecnologie disponibili, l’elettrolizzatore a ossidi solidi (SOE) risulta particolarmente efficiente grazie alla sua capacità di operare ad alta temperatura con vapore surriscaldato, il che favorisce la termodinamica della reazione di elettrolisi. Il presente lavoro di tesi analizza l’integrazione energetica di un SOE con il processo Haber-Bosch per la sintesi di ammoniaca, al fine di incrementare l’efficienza energetica complessiva dell’impianto mediante recupero termico. A tale scopo, un sito produttivo di ammoniaca verde su piccola scala è stato simulato in UniSim® Design R500, ove il funzionamento dell’elettrolizzatore è stato studiato mediante un modello zero-dimensionale (0D) stazionario, capace di descriverne il comportamento intrinseco. L’integrazione proposta vede l’aggiunta di un generatore di vapore con recupero di calore (HRSG, Heat Recovery Steam Generator) a valle del reattore di sintesi, per la produzione di un quantitativo non trascurabile del vapore necessario all’elettrolizzatore. Tale integrazione termica riduce la domanda energetica della sezione di produzione dell’idrogeno, aumentando l’efficienza del sistema SOE e riducendo il consumo specifico di energia elettrica per la produzione dell’idrogeno. Considerando l’intero impianto, l’integrazione comporta una riduzione del fabbisogno elettrico, con conseguente incremento dell’efficienza energetica complessiva. L’analisi tecnico-economica evidenzia inoltre che tali modifiche consentono una diminuzione del Costo Livellato dell’Ammoniaca (LCOA, Levelized Cost of Ammonia), confermando l’efficacia sinergica tra produzione di idrogeno tramite SOE e il processo Haber-Bosch per la sintesi di ammoniaca verde.
Techno-economic assessment of green ammonia synthesis via solid oxide electrolysis
Macchi, Alessandra
2024/2025
Abstract
Ammonia is conventionally produced through the Haber-Bosch process, which relies on hydrogen derived from fossil fuels and is therefore associated with CO2 emissions. To decarbonize this route, renewable hydrogen produced by water electrolysis has been explored. Among electrolyzer technologies, the Solid Oxide Electrolyzer (SOE) is particularly promising due to its high-temperature operation with superheated steam, which improves thermodynamic efficiency. This thesis work investigates the energy integration of an SOE with the Haber-Bosch synthesis loop to enhance overall plant efficiency through process heat recovery. A small-scale green ammonia production plant is simulated in UniSim® Design R500, where the electrolyzer behavior is modeled through a dedicated steady-state zero-dimensional (0D) model that captures its intrinsic performance. The proposed configuration integrates a Heat Recovery Steam Generator (HRSG) downstream of the ammonia reactor, allowing the recovery of reaction heat to supply a significant portion of the steam required by the electrolyzer. This thermal coupling reduces the energy demand of the hydrogen production section, thereby enhancing the efficiency of the SOE system and lowering the specific electrical energy consumption for hydrogen generation. At the plant level, the integration strategy results in an overall improvement of energy performance, characterized by higher efficiency and reduced power requirements. The techno-economic assessment confirms that these enhancements contribute to a lower Levelized Cost of Ammonia (LCOA), highlighting the effectiveness and sustainability of coupling SOE-based hydrogen production with the Haber-Bosch synthesis loop for renewable ammonia generation.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Macchi_Executive Summary.pdf
non accessibile
Descrizione: Testo dell'Executive Summary
Dimensione
672.99 kB
Formato
Adobe PDF
|
672.99 kB | Adobe PDF | Visualizza/Apri |
|
2025_12_Macchi_Tesi.pdf
non accessibile
Descrizione: Testo della Tesi
Dimensione
4.71 MB
Formato
Adobe PDF
|
4.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247106