Mechanical calculators were the main tools for performing calculations until the 1970s, when they were replaced by electronic systems. However, in recent years there has been a renewed interest in mechanical systems for computation, driven by the development of new technologies that overcome previous limitations, such as scalability and complexity. Mechanical systems possess several advantages, such as low damping, the ability to process mechanical signals without transduction, and theoretically achievable intelligent behavior, that make them suitable for low-power computational tasks. Among the emerging approaches in this field, there is the use of metamaterials. Metamaterials are engineered materials designed to manipulate waves in order to obtain physical properties that are difficult or impossible to have with conventional materials. While the concept of computing with metamaterials has been demonstrated in the literature, its application to mechanical metamaterials remains unexplored, and existing implementations often lack physically realizable architectures. This thesis aims to fill this gap, proposing a mechanical metamaterial structure capable of performing differentiation and integration of an incident wave. Following a common approach in the literature, the theory is first developed for an infinite metamaterial beam and subsequently extended to a finite one-dimensional chain of discrete masses and springs. Finally, based on the proposed architectures, a micro electro-mechanical system (MEMS) capable of differentiating or integrating incident waves is designed and validated using finite element method (FEM) simulations.
I calcolatori meccanici sono stati gli strumenti principali per eseguire calcoli fino agli anni '70, quando sono stati sostituiti dai sistemi elettronici. Tuttavia, negli ultimi anni si è assistito a un rinnovato interesse nell'uso dei sistemi meccanici come calcolatori, trainato dallo sviluppo di nuove tecnologie che superano i limiti delle precedenti, come la scalabilità e la complessità. I sistemi meccanici presentano diversi vantaggi, come il basso smorzamento, la capacità di elaborare segnali meccanici senza trasduzione e la possibilità teorica di mostrare un comportamento intelligente. Tutto questo li rende adatti ad applicazioni di calcolo a basso consumo di potenza. Esistono diversi approcci in questo campo, e tra questi vi è l'uso dei metamateriali. I metamateriali sono materiali ingegnerizzati, progettati per manipolare le onde al fine di ottenere proprietà fisiche difficili o impossibili da ottenere con i materiali convenzionali. Sebbene il concetto di calcolo con metamateriali sia stato dimostrato in letteratura, la sua applicazione ai metamateriali meccanici rimane inesplorata e le implementazioni esistenti spesso non dispongono di architetture fisicamente realizzabili. Questa tesi mira a colmare questa lacuna, proponendo metamateriali meccanici in grado di calcolare la derivata e l'integrale di un'onda incidente. Seguendo un approccio comune nella letteratura scientifica del settore, la teoria viene inizialmente sviluppata per una trave infinita e successivamente estesa a una catena finita monodimensionale di masse e molle. Infine, sulla base delle architetture proposte, viene progettato un sistema micro elettro-meccanico (MEMS) in grado di derivare o integrare le onde incidenti, e validato utilizzando simulazioni agli elementi finiti (FEM).
A meta MEMS that performs differentiation and integration
Fortuna, Emiliano Maria
2024/2025
Abstract
Mechanical calculators were the main tools for performing calculations until the 1970s, when they were replaced by electronic systems. However, in recent years there has been a renewed interest in mechanical systems for computation, driven by the development of new technologies that overcome previous limitations, such as scalability and complexity. Mechanical systems possess several advantages, such as low damping, the ability to process mechanical signals without transduction, and theoretically achievable intelligent behavior, that make them suitable for low-power computational tasks. Among the emerging approaches in this field, there is the use of metamaterials. Metamaterials are engineered materials designed to manipulate waves in order to obtain physical properties that are difficult or impossible to have with conventional materials. While the concept of computing with metamaterials has been demonstrated in the literature, its application to mechanical metamaterials remains unexplored, and existing implementations often lack physically realizable architectures. This thesis aims to fill this gap, proposing a mechanical metamaterial structure capable of performing differentiation and integration of an incident wave. Following a common approach in the literature, the theory is first developed for an infinite metamaterial beam and subsequently extended to a finite one-dimensional chain of discrete masses and springs. Finally, based on the proposed architectures, a micro electro-mechanical system (MEMS) capable of differentiating or integrating incident waves is designed and validated using finite element method (FEM) simulations.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Fortuna_Thesis.pdf
non accessibile
Dimensione
24.34 MB
Formato
Adobe PDF
|
24.34 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Fortuna_Executive_Summary.pdf
non accessibile
Dimensione
3.05 MB
Formato
Adobe PDF
|
3.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247155