Decarbonizing the industrial sector is a fundamental aspect of the energy transition. This study focuses on the glass industry, which is among the hard-to-abate sectors. The research examines the industrial processes underlying glass production, with particular attention to the glass-melting phase, energy-intensive and especially challenging, since it includes process emissions arising from the thermal decomposition of certain raw materials. The investigation identified the optimal strategy as retrofitting the existing furnace to a hydrogen–electric hybrid furnace, coupled with a Solid Oxide Electrolysis Cell (SOEC) for on-site production of the required hydrogen. This solution is particularly effective because it eliminates emissions from natural gas combustion with only limited structural modifications to the furnace. Moreover, integrating the SOEC mitigates supply risks and price volatility associated with external hydrogen procurement. The reference-case melting process was modeled using Aspen Plus and validated by comparing selected key parameters against industrial standards. The model was then modified by converting the furnace to the hydrogen-electric hybrid configuration and integrating the SOEC. The study analyzes different combustion modes (with dry hydrogen and with wet hydrogen) and alternative strategies for preheating the water fed to the SOEC. To address process emissions, partial or total substitutions of the carbonates in the batch were investigated. The system with wet combustion and preheating through the furnace flue gases proved to be the most effective strategy, yet the gain is insufficient to justify choosing it over dry hydrogen combustion, which is more conventional and industrially realistic. Complete substitution of the carbonates, if considered feasible by industrial operators, is the most advantageous alternative in all configurations, both in terms of emission reduction and in terms of energy required for melting. The model with dry-hydrogen combustion, combined with complete substitution of the carbonates, achieves a 100% reduction in Scope 1 emissions compared to the baseline model, and an 87% reduction when considering Scope 1 and Scope 2 emissions, assuming an electricity-grid carbon intensity of 50 gCO₂/kWh. The cost of CO₂ avoided (CCA) in this scenario is 280 €/𝑡𝐶𝑂2.
La decarbonizzazione del settore industriale è un aspetto fondamentale della transizione energetica. Questo studio si concentra sull’industria del vetro, che rientra tra i settori “hard-to-abate”. Il lavoro analizza i processi industriali alla base della produzione vetraria, con particolare attenzione alla fase di fusione del vetro, energivora e particolarmente problematica, poiché include emissioni di processo dovute alla decomposizione termica di alcune materie prime. L’indagine ha evidenziato come strategia ottimale l’adattamento della fornace esistente a una fornace ibrida idrogeno-elettricità, abbinata a una cella elettrolitica a ossido solido (SOEC) per la produzione in sito dell’idrogeno necessario. Questa soluzione risulta particolarmente efficace poiché, a fronte di interventi strutturali limitati sulla fornace, consente di eliminare completamente le emissioni dovute alla combustione del gas naturale. Inoltre, l’integrazione della SOEC mitiga i rischi di fornitura e la volatilità dei prezzi relativi all’approvvigionamento esterno di idrogeno. Il processo di fusione del caso di riferimento è stato modellato con il software Aspen Plus e validato tramite il confronto di alcuni parametri chiave rispetto agli standard industriali. Una volta validato il processo base, il modello è stato modificato convertendo la fornace a alimentazione ibrida e integrando la cella a ossido solido. Lo studio analizza diverse modalità di combustione (con idrogeno secco e con idrogeno umido) e strategie alternative di preriscaldo dell’acqua in ingresso alla SOEC. Per far fronte alle emissioni di processo inoltre, sono state studiate sostituzioni, parziali o totali, dei carbonati nella miscela responsabili delle emissioni di CO2. Il sistema con combustione umida e preriscaldo basato prevalentemente sul recupero termico dai fumi della fornace si è rivelato la strategia più efficace, ma in misura non sufficiente da preferirlo alla combustione secca, più convenzionale e realistica nel contesto industriale. La sostituzione totale delle materie prime è l’alternativa più vantaggiosa in tutte le configurazioni, sia in termini di riduzione delle emissioni che in termini di richiesta energetica per la fusione. Il modello con combustione tramite idrogeno secco, abbinato alla completa sostituzione dei carbonati, permette una riduzione delle emissioni di Scope 1 del 100% rispetto al modello base, e dell’87% se si considerano le emissioni di Scope 1 e 2, assumendo una intensità di carbonio della rete elettrica di 50 gCO2/kWh. Il costo di CO2 evitata (CCA) in questo scenario è di 280 €/𝑡𝐶𝑂2.
Techno-economic evaluation of hybrid glass melting with on-site hydrogen generation via solid oxide electrolysis
Caridi, Cecilia
2024/2025
Abstract
Decarbonizing the industrial sector is a fundamental aspect of the energy transition. This study focuses on the glass industry, which is among the hard-to-abate sectors. The research examines the industrial processes underlying glass production, with particular attention to the glass-melting phase, energy-intensive and especially challenging, since it includes process emissions arising from the thermal decomposition of certain raw materials. The investigation identified the optimal strategy as retrofitting the existing furnace to a hydrogen–electric hybrid furnace, coupled with a Solid Oxide Electrolysis Cell (SOEC) for on-site production of the required hydrogen. This solution is particularly effective because it eliminates emissions from natural gas combustion with only limited structural modifications to the furnace. Moreover, integrating the SOEC mitigates supply risks and price volatility associated with external hydrogen procurement. The reference-case melting process was modeled using Aspen Plus and validated by comparing selected key parameters against industrial standards. The model was then modified by converting the furnace to the hydrogen-electric hybrid configuration and integrating the SOEC. The study analyzes different combustion modes (with dry hydrogen and with wet hydrogen) and alternative strategies for preheating the water fed to the SOEC. To address process emissions, partial or total substitutions of the carbonates in the batch were investigated. The system with wet combustion and preheating through the furnace flue gases proved to be the most effective strategy, yet the gain is insufficient to justify choosing it over dry hydrogen combustion, which is more conventional and industrially realistic. Complete substitution of the carbonates, if considered feasible by industrial operators, is the most advantageous alternative in all configurations, both in terms of emission reduction and in terms of energy required for melting. The model with dry-hydrogen combustion, combined with complete substitution of the carbonates, achieves a 100% reduction in Scope 1 emissions compared to the baseline model, and an 87% reduction when considering Scope 1 and Scope 2 emissions, assuming an electricity-grid carbon intensity of 50 gCO₂/kWh. The cost of CO₂ avoided (CCA) in this scenario is 280 €/𝑡𝐶𝑂2.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Caridi_Executive Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Caridi_Tesi.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
4.62 MB
Formato
Adobe PDF
|
4.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247262