Modelling power supply and energy demand is essential for developing countries to support long-term energy planning and assess mitigation strategies. This thesis evaluates how different sectoral energy-demand scenarios—focused on the residential sector—shape the evolution of Tanzania’s power system under two optimisation pathways: least-cost and balanced cost-emission. A statistical approach and three modelling frameworks—IOA (Input-Output Analysis), MAED (Model for Analysis of Energy Demand), and Hypatia (Open-Source Energy Modelling Framework)—are used to explore future demand and supply mixes across five scenarios: Business as Usual (BaU), Access to Electricity (AtE), AtE with Urbanization (AtE+Urb), AtE with Electrification of the residential sector (AtE+El), and AtE with Urbanization and Electrification of the residential sector (AtE+Urb+El). Results show strong regional disparities, with the Coastal Zone as the main driver of national energy demand. Residential electrification is the key determinant of future electricity growth, increasing demand by up to 305% relative to BaU and enabling cumulative CO₂ reductions of up to 192.6 Mt over the 2024–2050 period through partial substitution of traditional fuels. Across all scenarios, the least-cost supply mix is dominated by natural gas, solar, and hydropower, while coal and wind gain relevance under high-demand conditions. Balanced cost-emissions pathways promote higher renewable integration, showing that environmental goals can be achieved without significant economic trade-offs in high energy demand scenarios. Spatial analysis further highlights the strategic importance of transmission planning, given the significant regional differences in resource availability and power flows.
La modellazione dell’offerta e della domanda di energia è fondamentale per i paesi in via di sviluppo, poiché consente una pianificazione energetica a lungo termine efficace e la valutazione di strategie di mitigazione. Questa tesi analizza come diversi scenari settoriali di domanda energetica—con particolare attenzione al settore residenziale— influenzino l’evoluzione del sistema elettrico della Tanzania secondo due percorsi di ottimizzazione: minimizzazione dei costi e bilanciamento costi-emissioni. Un approccio statistico e tre strumenti di modellazione—IOA (Input-Output Analysis), MAED (Model for Analysis of Energy Demand) e Hypatia (framework open-source per la modellazione energetica)—sono utilizzati per esplorare i possibili mix futuri di domanda e offerta energetica in cinque scenari: Business as Usual (BaU), Access to Electricity (AtE), AtE con urbanizzazione (AtE+Urb), AtE con elettrificazione del settore residenziale (AtE+El) e AtE con urbanizzazione ed elettrificazione del settore residenziale (AtE+Urb+El). I risultati evidenziano forti disparità regionali, con la zona costiera come principale motore della domanda nazionale di energia. L’elettrificazione del settore residenziale si conferma il fattore chiave per la crescita futura della domanda elettrica, con aumenti fino al 305% rispetto allo scenario BaU e una riduzione cumulativa delle emissioni di CO₂ fino a 192,6 Mt nel periodo 2024–2050 grazie alla sostituzione parziale dei combustibili tradizionali. In tutti gli scenari, il mix elettrico a minimo costo è dominato da impianti a gas naturale, fotovoltaico e idroelettrico, mentre carbone ed eolico assumono maggiore rilevanza in contesti ad alta domanda. I percorsi bilanciati in termini di costi ed emissioni favoriscono una maggiore integrazione delle energie rinnovabili, dimostrando che gli obiettivi ambientali possono essere raggiunti senza compromessi economici significativi nei casi di elevata domanda energetica. L’analisi spaziale evidenzia inoltre l’importanza strategica della pianificazione delle linee di trasmissione, dato il forte divario tra le regioni in termini di disponibilità delle risorse e flussi di potenza.
An analysis of Tanzania's energy system: impact of residential electricity demand scenarios on the future power supply mix
Romio, Marco
2024/2025
Abstract
Modelling power supply and energy demand is essential for developing countries to support long-term energy planning and assess mitigation strategies. This thesis evaluates how different sectoral energy-demand scenarios—focused on the residential sector—shape the evolution of Tanzania’s power system under two optimisation pathways: least-cost and balanced cost-emission. A statistical approach and three modelling frameworks—IOA (Input-Output Analysis), MAED (Model for Analysis of Energy Demand), and Hypatia (Open-Source Energy Modelling Framework)—are used to explore future demand and supply mixes across five scenarios: Business as Usual (BaU), Access to Electricity (AtE), AtE with Urbanization (AtE+Urb), AtE with Electrification of the residential sector (AtE+El), and AtE with Urbanization and Electrification of the residential sector (AtE+Urb+El). Results show strong regional disparities, with the Coastal Zone as the main driver of national energy demand. Residential electrification is the key determinant of future electricity growth, increasing demand by up to 305% relative to BaU and enabling cumulative CO₂ reductions of up to 192.6 Mt over the 2024–2050 period through partial substitution of traditional fuels. Across all scenarios, the least-cost supply mix is dominated by natural gas, solar, and hydropower, while coal and wind gain relevance under high-demand conditions. Balanced cost-emissions pathways promote higher renewable integration, showing that environmental goals can be achieved without significant economic trade-offs in high energy demand scenarios. Spatial analysis further highlights the strategic importance of transmission planning, given the significant regional differences in resource availability and power flows.| File | Dimensione | Formato | |
|---|---|---|---|
|
An Analysis of Tanzania’s Energy System Impact of Residential Electricity Demand Scenarios on the Future Power Supply Mix.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
5.15 MB
Formato
Adobe PDF
|
5.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247350