In the aeronautical sector, the blade-out phenomenon has long been recognized as a critical safety issue. However, despite the widespread use of aeroderivative gas turbines in the oil and gas industry, the implications of blade-out events in stationary ground-based applications have not been thoroughly investigated. Unlike aircraft engines, land-based turbines operate within enclosures that physically separate the machine from personnel, potentially acting as a containment barrier in the event of blade ejection. This thesis investigates the current containment capabilities of an enclosure surrounding a six-stage low-pressure aeroderivative turbine. The study adopts a mechanical model derived from the ASME framework “The Containment of Burst Fragments by Cylindrical Shells”, which describes a two-stage impact dynamic: local perforation due to compression and shear, followed by plastic deformation failure if perforation does not occur. The model was applied to turbine blades under varying conditions of rotational speed, ambient temperature, and blade count. Validation was performed through LS-DYNA impact simulations on the third stage, and then the model was extended to all six stages. Sensitivity analyses revealed that stainless steel enclosures outperform carbon steel ones in terms of containment effectiveness. In certain scenarios involving single-airfoil ejection, full containment was achieved. Nevertheless, the results indicate that current enclosure designs are insufficient in most cases, highlighting the need for design improvements to enhance safety and reliability.
Nel settore aeronautico, il fenomeno del blade-out è da tempo riconosciuto come una questione critica per la sicurezza. Tuttavia, nonostante l’ampio utilizzo di turbine a gas aeroderivative nell’industria oil & gas, le implicazioni di eventi di blade-out in applicazioni stazionarie a terra non sono state ancora investigate in modo approfondito. A differenza dei motori aeronautici, le turbine installate a terra operano all’interno di enclosure che separano fisicamente la macchina dal personale, fungendo potenzialmente da barriera di contenimento in caso di espulsione di una pala. Questa tesi analizza le attuali capacità di contenimento di un enclosure che racchiude una turbina aeroderivativa a bassa pressione composta da sei stadi. Lo studio adotta un modello meccanico derivato dal framework ASME “The Containment of Burst Fragments by Cylindrical Shells”, che descrive una dinamica d’impatto in due fasi: perforazione locale per compressione e taglio, seguita, nel caso in cui la perforazione non avvenga, da cedimento per deformazione plastica. Il modello è stato applicato alle pale della turbina considerando diverse condizioni operative: velocità di rotazione, temperatura ambiente e numero di pale coinvolte. La validazione è stata effettuata tramite simulazioni di impatto condotte con LS-DYNA sul terzo stadio, e successivamente il modello è stato esteso a tutti e sei gli stadi. Le analisi di sensibilità hanno evidenziato che l’enclosure in acciaio inox offre prestazioni superiori rispetto a quelli in acciaio al carbonio in termini di efficacia nel contenimento. In alcuni scenari, in particolare nel caso di espulsione di una singola pala, è stato raggiunto il contenimento completo. Tuttavia, i risultati indicano che i progetti attuali di enclosure risultano insufficienti nella maggior parte dei casi, evidenziando la necessità di miglioramenti progettuali per aumentare la sicurezza e l’affidabilità.
Gas turbine enclosure blade-out containment capability: a study for an aeroderivative power turbine
BENZONI, AGNESE
2024/2025
Abstract
In the aeronautical sector, the blade-out phenomenon has long been recognized as a critical safety issue. However, despite the widespread use of aeroderivative gas turbines in the oil and gas industry, the implications of blade-out events in stationary ground-based applications have not been thoroughly investigated. Unlike aircraft engines, land-based turbines operate within enclosures that physically separate the machine from personnel, potentially acting as a containment barrier in the event of blade ejection. This thesis investigates the current containment capabilities of an enclosure surrounding a six-stage low-pressure aeroderivative turbine. The study adopts a mechanical model derived from the ASME framework “The Containment of Burst Fragments by Cylindrical Shells”, which describes a two-stage impact dynamic: local perforation due to compression and shear, followed by plastic deformation failure if perforation does not occur. The model was applied to turbine blades under varying conditions of rotational speed, ambient temperature, and blade count. Validation was performed through LS-DYNA impact simulations on the third stage, and then the model was extended to all six stages. Sensitivity analyses revealed that stainless steel enclosures outperform carbon steel ones in terms of containment effectiveness. In certain scenarios involving single-airfoil ejection, full containment was achieved. Nevertheless, the results indicate that current enclosure designs are insufficient in most cases, highlighting the need for design improvements to enhance safety and reliability.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Benzoni.pdf
non accessibile
Dimensione
10.57 MB
Formato
Adobe PDF
|
10.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247410