In recent years, research in the field of MEMS accelerometers has been increasingly advancing towards achieving the performance levels offered by the more expensive quartz accelerometers. Within this context, closed-loop MEMS accelerometers represent an effective solution for high-performance systems, improving linearity, stability, and Full-Scale Range compared to traditional open-loop accelerometers. However, this configuration introduces greater complexity in the control architecture, as it requires the implementation of a compensator filter to ensure system stability. To address these design challenges, the present work, carried out in collaboration with Civitanavi Systems, explores the development of digital control electronics for amplitude-modulated MEMS accelerometers. The work begins with the study of the sensor architecture and the modeling of its mechanical behavior, analyzing the performance limitations of the open-loop configuration and the advantages introduced by the closed-loop approach. It then proceeds with the analysis and simulation of an analog control loop, with particular focus on the compensator filter design, which plays a key role in ensuring system linearity and stability. The next part of the work deals with the transition of the control loop to the digital domain and its implementation on an FPGA. The digital model is validated through experimental measurements both in open-loop and closed-loop configurations, demonstrating excellent agreement with the simulation results. Finally, the digital synthesis flow, aimed at integrating the system into an ASIC technology, is presented, representing the first step towards a fully integrated mixed-signal control electronics. The results demonstrate that a digital closed-loop architecture is an effective solution for achieving high-performance MEMS accelerometers, enabling the development of compact, stable and low-noise devices suitable for advanced applications such as inertial navigation.
Negli ultimi anni la ricerca nel campo di accelerometri MEMS sta avanzando sempre di più verso il raggiungimento delle prestazioni ottenibile grazie ai più costosi accelerometri al quarzo. In questo contesto, gli accelerometri MEMS in anello chiuso rappresentano una soluzione efficace per sistemi ad alte prestazioni migliorando linearità, stabilità e Full-Scale Range rispetto ai tradizionali accelerometri in anello aperto. Tuttavia, tale configurazione comporta una maggiore complessità dell’architettura di controllo, poiché richiede l’implementazione di un filtro compensatore per garantire la stabilità del sistema. Per rispondere a queste esigenze progettuali, il presente lavoro di tesi, in collaborazione con Civitanavi Systems, approfondisce lo studio dell’elettronica di controllo digitale per accelerometri MEMS a modulazione d’ampiezza. Il lavoro analizza la progettazione di un anello di retroazione, partendo da un modello meccanico del sensore e dalla valutazione dei limiti prestazionali dell’architettura open-loop, fino allo studio di una soluzione closed-loop. Successivamente, la tesi approfondisce la progettazione e la simulazione di un anello di controllo analogico, con particolare attenzione al filtro compensatore e al suo corretto dimensionamento. La parte successiva descrive il passaggio dell’anello di controllo nel dominio digitale e la sua implementazione su piattaforma FPGA. Il modello è stato trasposto nel dominio discreto e validato sperimentalmente in configurazione open-loop e closed-loop, confermando la piena coerenza tra risultati simulati e misure sperimentali. Viene infine illustrato il flusso di sintesi digitale finalizzato all’integrazione del sistema in tecnologia ASIC, primo passo verso la realizzazione di un’elettronica di controllo mixed-signal completamente integrata. I risultati ottenuti dimostrano che un’architettura digitale in anello chiuso rappresenta una soluzione efficace per accelerometri MEMS ad alte prestazioni, aprendo la strada allo sviluppo di dispositivi integrabili, stabili e a basso rumore destinati ad applicazioni avanzate come la navigazione inerziale.
Controllo digitale di accelerometri MEMS in anello chiuso: progettazione, implementazione in FPGA e prototipazione dell'ASIC
STECCONI, ELENA
2024/2025
Abstract
In recent years, research in the field of MEMS accelerometers has been increasingly advancing towards achieving the performance levels offered by the more expensive quartz accelerometers. Within this context, closed-loop MEMS accelerometers represent an effective solution for high-performance systems, improving linearity, stability, and Full-Scale Range compared to traditional open-loop accelerometers. However, this configuration introduces greater complexity in the control architecture, as it requires the implementation of a compensator filter to ensure system stability. To address these design challenges, the present work, carried out in collaboration with Civitanavi Systems, explores the development of digital control electronics for amplitude-modulated MEMS accelerometers. The work begins with the study of the sensor architecture and the modeling of its mechanical behavior, analyzing the performance limitations of the open-loop configuration and the advantages introduced by the closed-loop approach. It then proceeds with the analysis and simulation of an analog control loop, with particular focus on the compensator filter design, which plays a key role in ensuring system linearity and stability. The next part of the work deals with the transition of the control loop to the digital domain and its implementation on an FPGA. The digital model is validated through experimental measurements both in open-loop and closed-loop configurations, demonstrating excellent agreement with the simulation results. Finally, the digital synthesis flow, aimed at integrating the system into an ASIC technology, is presented, representing the first step towards a fully integrated mixed-signal control electronics. The results demonstrate that a digital closed-loop architecture is an effective solution for achieving high-performance MEMS accelerometers, enabling the development of compact, stable and low-noise devices suitable for advanced applications such as inertial navigation.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Stecconi_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Stecconi_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
16.32 MB
Formato
Adobe PDF
|
16.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247420