The thesis investigates the production and characterization of magnetic components fabricated via Binder Jetting additive manufacturing. Three different materials were studied: a high-entropy alloy (HEA) with equiatomic composition of Al, Cr, Fe, Mo, and Ni; strontium hexaferrite (SFO) and NdFeB. Each material presented specific challenges, namely the optimization of the sintering route for the HEA, the adjustment of printing parameters for SFO and the prevention of oxidation for NdFeB. Both powders and printed samples were characterized to evaluate the influence of process parameters on the final density, microstructure, and magnetic performance. The results were compared with conventionally sintered or bonded magnets. The printed parts exhibited high porosity, suboptimal microstructures and lower magnetic properties compared to traditionally manufactured components. HEA densification was not achieved due to the formation of an alumina shell on the powder surface, which hindered the nucleation of sintering necks. SFO samples reached a maximum relative density of 76% when using a feedstock composed of a mix of fine and coarse powders. Magnetic characterization revealed that the coercivity was primarily influenced by particle size rather than density. A ring-shaped sample was successfully printed, and magnetic mapping confirmed that the final magnetic field distribution can be tailored through the geometry of the printed component. NdFeB powders underwent oxidation during printing in ambient atmosphere. The highest density was achieved through sintering under high vacuum, yielding a microstructure of Nd2Fe14B grains surrounded by a Nd-rich phase, which was contaminated by oxygen, and α-Fe inclusions. Printing under a controlled inert atmosphere, or alternatively performing sintering in a reducing environment, could mitigate oxidation and enhance densification and magnetic properties. By optimizing processing conditions, Binder Jetting has the potential to become a promising route for the fabrication of complex-shaped magnetic components without a polymeric binder, thus preserving superior magnetic performance.
La tesi indaga la produzione e la caratterizzazione di componenti magnetici prodotti tramite stampa in 3D con Binder Jetting. Sono stati studiati tre diversi materiali: una lega ad alta entropia composta da Al, Cr, Fe, Mo e Ni in quantità equiatomica, stronzio ferrite e NdFeB. Ogni materiale presenta delle specifiche criticità, ovvero l’ottimizzazione del sintering nel caso della lega ad alta entropia, la regolazione dei parametri di stampa nel caso della stronzio ferrite e la protezione dall’ossidazione nel caso del NdFeB. Sia le polveri che i componenti stampati sono stati caratterizzati per valutare l’influenza dei vari parametri sulla densità, sulla microstruttura finale e sulle proprietà magnetiche. I risultati sono quindi stati confrontati con magneti prodotti tradizionalmente tramite sintering o bonding. I provini stampati presentano un alto livello di porosità, una microstruttura non ottimale e proprietà magnetiche inferiori. I provini della lega ad alta entropia non sono densificati a causa della formazione di un guscio di allumina superficiale, che ha ostacolato la formazione dei colli di sintering. I provini di stronzio ferrite hanno raggiunto un livello massimo di densificazione pari al 76% partendo da una miscela di polveri fini e grossolane. La caratterizzazione magnetica ha rivelato che la coercività è influenzata più dalla dimensione delle polveri che dalla densità. È stato stampato con successo un provino a forma di anello, la cui mappa magnetica indica che è possibile controllare la distribuzione del campo magnetico nello spazio modificando la geometria dei componenti. Le polveri di NdFeB hanno subito ossidazione durante la stampa in atmosfera non protetta. Il sintering in alto vuoto risulta in provini più densi, con una microstruttura formata da grani di Nd2Fe14B circondati da una fase ricca di Nd altamente ossidata e inclusioni di Fe α. La stampa in atmosfera controllata o il sintering in atmosfera riducente potrebbero mitigare l’ossidazione, migliorando la densificazione e le proprietà magnetiche. Ottimizzando il processo, il Binder Jetting ha la potenzialità di diventare una tecnologia promettente per la produzione di magneti con geometrie complesse senza ricorrere ad un binder polimerico, e quindi ottenendo una prestazione magnetica superiore.
A feasibility study on Binder Jetting of magnetic materials
Sandri, Anita
2024/2025
Abstract
The thesis investigates the production and characterization of magnetic components fabricated via Binder Jetting additive manufacturing. Three different materials were studied: a high-entropy alloy (HEA) with equiatomic composition of Al, Cr, Fe, Mo, and Ni; strontium hexaferrite (SFO) and NdFeB. Each material presented specific challenges, namely the optimization of the sintering route for the HEA, the adjustment of printing parameters for SFO and the prevention of oxidation for NdFeB. Both powders and printed samples were characterized to evaluate the influence of process parameters on the final density, microstructure, and magnetic performance. The results were compared with conventionally sintered or bonded magnets. The printed parts exhibited high porosity, suboptimal microstructures and lower magnetic properties compared to traditionally manufactured components. HEA densification was not achieved due to the formation of an alumina shell on the powder surface, which hindered the nucleation of sintering necks. SFO samples reached a maximum relative density of 76% when using a feedstock composed of a mix of fine and coarse powders. Magnetic characterization revealed that the coercivity was primarily influenced by particle size rather than density. A ring-shaped sample was successfully printed, and magnetic mapping confirmed that the final magnetic field distribution can be tailored through the geometry of the printed component. NdFeB powders underwent oxidation during printing in ambient atmosphere. The highest density was achieved through sintering under high vacuum, yielding a microstructure of Nd2Fe14B grains surrounded by a Nd-rich phase, which was contaminated by oxygen, and α-Fe inclusions. Printing under a controlled inert atmosphere, or alternatively performing sintering in a reducing environment, could mitigate oxidation and enhance densification and magnetic properties. By optimizing processing conditions, Binder Jetting has the potential to become a promising route for the fabrication of complex-shaped magnetic components without a polymeric binder, thus preserving superior magnetic performance.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Sandri_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
|
2525_12_Sandri_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo Tesi
Dimensione
105.36 MB
Formato
Adobe PDF
|
105.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247458