Turbulent bubbly jets occur in a wide range of industrial and environmental systems, such as chemical reactors, flotation cells, and injection devices. In these flows, gas bubbles dispersed in a liquid phase exhibit distinctive transport and mixing properties relevant to pollutant removal, mass transfer, and reaction enhancement in biochemical and petrochemical processes. Beyond their practical importance, bubbly jets also represent a fundamental topic in modern fluid dynamics research. This study presents a numerical investigation of turbulent bubbly jets using an Euler–Euler RANS monodisperse model. After validation against experimental data, the work analyzes the mechanisms driving bubble migration within the jet, showing that the lateral drift of bubbles from the core toward the periphery originates primarily from lift forces. Once the migration dynamics are characterized at moderate Reynolds numbers, the analysis is extended to higher Reynolds numbers to clarify how the relative importance of interfacial forces evolves. The results show that, with increasing Reynolds number, the lift influence decreases, while pressure gradient and virtual mass effects become increasingly important in governing bubble motion. The growing influence of these forces is further explained through analytical and dimensional considerations. The model captures the key features of bubbly jet dynamics and allows the jet to be divided into regions according to the dominant mechanisms, clarifying how forces drive bubble motion and providing insight into overall jet behavior. The findings provide a foundation for future research, with potential directions including increasing gas fractions, extending to multiphase systems with solid particles either replacing the gas phase or adding a solid phase to study three-phase flows, adopting Reynolds stress models for deeper physical insight, and performing experimental campaigns at higher Reynolds numbers to validate the proposed theoretical interpretations.
I getti turbolenti bifase a bolle si riscontrano in numerosi sistemi industriali e ambientali, quali reattori chimici, celle di flottazione e dispositivi di iniezione. In tali flussi, le bolle di gas disperse nella fase liquida mostrano peculiari proprietà di trasporto e miscelamento, rilevanti per la rimozione di inquinanti, il trasferimento di massa e l’intensificazione di reazioni nei processi biochimici e petrolchimici. Oltre al loro interesse applicativo, i getti bifase a bolle rappresentano un tema di riferimento nella ricerca contemporanea in ambito fluidodinamico. Il presente studio propone un’indagine numerica di getti turbolenti bifase a bolle condotta mediante un modello Eulero-Eulero RANS monodisperso. A seguito di validazione con dati sperimentali, il lavoro analizza i meccanismi che governano la migrazione laterale delle bolle all’interno del getto, mostrando come la loro deriva dal centro verso l'esterno sia dovuta principalmente alla forza di lift. Una volta caratterizzata la fisica della migrazione a numeri di Reynolds moderati, l’analisi viene estesa a regimi a Reynolds più elevati, per chiarire l’evoluzione delle forze interfacciali al cambiare delle condizioni. I risultati evidenziano che, all’aumentare del numero di Reynolds, l’influenza del lift diminuisce, mentre il gradiente di pressione e la "virtual mass" assumono un ruolo sempre più rilevante nell'influenzare la dinamica delle bolle. L’accresciuta importanza di tali forze è interpretata tramite considerazioni analitiche e dimensionali. Il modello riproduce i principali fenomeni caratteristici dei getti bifase a bolle e consente di suddividere il getto in regioni distinte in base ai meccanismi dominanti, fornendo una visione coerente dei processi che governano il moto delle bolle e la dinamica complessiva del getto. I risultati costituiscono una base per futuri sviluppi, tra cui l’estensione a più elevate portate della fase gassosa, lo studio di sistemi multifase con particelle solide (in sostituzione o in aggiunta alla fase gassosa), l’adozione di modelli RSM per una descrizione più dettagliata dell’anisotropia turbolenta e nuove campagne sperimentali ad alti numeri di Reynolds per validare le interpretazioni teoriche proposte.
Euler-Euler simulations of turbulent bubbly jets
Aloisi, Lorenzo Angelo
2024/2025
Abstract
Turbulent bubbly jets occur in a wide range of industrial and environmental systems, such as chemical reactors, flotation cells, and injection devices. In these flows, gas bubbles dispersed in a liquid phase exhibit distinctive transport and mixing properties relevant to pollutant removal, mass transfer, and reaction enhancement in biochemical and petrochemical processes. Beyond their practical importance, bubbly jets also represent a fundamental topic in modern fluid dynamics research. This study presents a numerical investigation of turbulent bubbly jets using an Euler–Euler RANS monodisperse model. After validation against experimental data, the work analyzes the mechanisms driving bubble migration within the jet, showing that the lateral drift of bubbles from the core toward the periphery originates primarily from lift forces. Once the migration dynamics are characterized at moderate Reynolds numbers, the analysis is extended to higher Reynolds numbers to clarify how the relative importance of interfacial forces evolves. The results show that, with increasing Reynolds number, the lift influence decreases, while pressure gradient and virtual mass effects become increasingly important in governing bubble motion. The growing influence of these forces is further explained through analytical and dimensional considerations. The model captures the key features of bubbly jet dynamics and allows the jet to be divided into regions according to the dominant mechanisms, clarifying how forces drive bubble motion and providing insight into overall jet behavior. The findings provide a foundation for future research, with potential directions including increasing gas fractions, extending to multiphase systems with solid particles either replacing the gas phase or adding a solid phase to study three-phase flows, adopting Reynolds stress models for deeper physical insight, and performing experimental campaigns at higher Reynolds numbers to validate the proposed theoretical interpretations.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Aloisi_Executive_Summary.pdf
accessibile in internet per tutti a partire dal 13/11/2028
Descrizione: Contenuto executive summary
Dimensione
1.52 MB
Formato
Adobe PDF
|
1.52 MB | Adobe PDF | Visualizza/Apri |
|
2025_12_Aloisi_Tesi.pdf
accessibile in internet per tutti a partire dal 13/11/2028
Descrizione: Contenuto tesi
Dimensione
3.39 MB
Formato
Adobe PDF
|
3.39 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247495