The growing interest in establishing a long-term human presence on the Moon has high lighted the need for in-situ manufacturing to reduce dependence on Earth-based supply chains. Using local resources, such as lunar regolith, and repurposing materials already present on the Moon are key enablers for sustainable and circular production strategies. This work provides a critical analysis of how manufacturing processes can be adapted for implementation on the lunar surface, evaluating their energy requirements and feasibility under the specific constraints of the lunar environment. The thesis reviews the current state of space and lunar manufacturing, available lunar energy sources, and the role of sustainability and circularity on the Moon, and then compares two case studies designed to promote less Earth-dependent supply chains. The first focuses on a wrench, represen tative of mass-produced tools, while the second examines a rover structural component, representative of on-demand spare-part production. The case study compares a regolith based casting process with additive manufacturing techniques: Laser Powder Bed Fusion (LPBF) and Direct Energy Deposition (DED). The assessment considers the potential use of lunar regolith for mould production, the suitability of each process for mass or on demand manufacturing, and their energy demands under realistic lunar power scenarios. Casting shows strong potential for large-scale part production thanks to its low energy cost and short processing times, though further development is required to ensure reliable mould filling and controlled solidification in low gravity. LPBF’s main challenge is powder handling, which becomes more difficult as cohesion increases in reduced gravity, although the technique offers superior design freedom and mechanical performance. For on-demand production, wire-fed DED appears promising as it avoids powder-related issues, but still requires stable melt pool control, mitigation of vaporization effects, and feasible in-situ wire production. Overall, this work shows, by means of a quantitative analysis and specif ically developed figures of merit, that lunar manufacturing requires careful consideration of resource availability, sustainability, energy constraints, and supply chain design
Il crescente interesse verso una presenza umana permanente sulla Luna ha evidenziato la necessità di sviluppare capacità produttive in-situ per ridurre la dipendenza dalle catene di approvvigionamento terrestri. L’utilizzo di risorse locali, come la regolite lunare, e il riuso di materiali già disponibili sulla Luna sono elementi chiave per strategie produttive sostenibili e circolari. Questo lavoro analizza in modo critico come i processi manifatturieri possano essere ripensati per un’implementazione in ambiente lunare, valutandone i requi siti energetici e la fattibilità operativa. La tesi esamina lo stato dell’arte della produzione nello spazio e sulla Luna, le fonti energetiche disponibili in ambiente lunare e il ruolo della circolarità, confrontando poi due casi studio pensati per ridurre la dipendenza dalla Terra: una chiave inglese, rappresentativa della produzione in serie, e un componente strutturale di un rover, rappresentativo della produzione on-demand. Entrambi i casi confrontano un processo di colata basato sull’utilizzo di regolite per la produzione degli stampi con due tecniche di additive manufacturing: Laser Powder Bed Fusion (LPBF) e Direct Energy Deposition (DED). L’analisi considera l’uso della regolite lunare, l’idoneità dei processi per produzione in serie o on-demand e i relativi consumi energetici in scenari lunari realistici. Il processo di colata mostra un buon potenziale grazie al basso fabbisogno energetico, pur richiedendo ulteriori sviluppi per controllare il riempimento e la solidificazione in bassa gravità. La tecnica LPBF risulta più complessa per via della gestione delle polveri, più coesive in microgravità, ma offre maggiore flessibilità progettuale e migliori proprietà meccaniche. Il DED a filo rappresenta una valida soluzione per la produzione su richiesta, evitando le problematiche della polvere, ma richiede un controllo accurato del bagno di fusione e la possibilità di produrre il filo in-situ, per favorire una catena di approvvigionamento indipendente dalle risorse terrestri. Complessivamente, il lavoro mostra, attraverso un’analisi quantitativa e specifici indicatori appositamente sviluppati, come la produzione lunare richieda una attenta valutazione integrata di risorse disponibili, sostenibilità, vin coli energetici e strategie di approvvigionamento.
Towards manufacturing in space: a preliminary investigation of energy-efficient processes for lunar manufacturing
Orlandi, Anna
2024/2025
Abstract
The growing interest in establishing a long-term human presence on the Moon has high lighted the need for in-situ manufacturing to reduce dependence on Earth-based supply chains. Using local resources, such as lunar regolith, and repurposing materials already present on the Moon are key enablers for sustainable and circular production strategies. This work provides a critical analysis of how manufacturing processes can be adapted for implementation on the lunar surface, evaluating their energy requirements and feasibility under the specific constraints of the lunar environment. The thesis reviews the current state of space and lunar manufacturing, available lunar energy sources, and the role of sustainability and circularity on the Moon, and then compares two case studies designed to promote less Earth-dependent supply chains. The first focuses on a wrench, represen tative of mass-produced tools, while the second examines a rover structural component, representative of on-demand spare-part production. The case study compares a regolith based casting process with additive manufacturing techniques: Laser Powder Bed Fusion (LPBF) and Direct Energy Deposition (DED). The assessment considers the potential use of lunar regolith for mould production, the suitability of each process for mass or on demand manufacturing, and their energy demands under realistic lunar power scenarios. Casting shows strong potential for large-scale part production thanks to its low energy cost and short processing times, though further development is required to ensure reliable mould filling and controlled solidification in low gravity. LPBF’s main challenge is powder handling, which becomes more difficult as cohesion increases in reduced gravity, although the technique offers superior design freedom and mechanical performance. For on-demand production, wire-fed DED appears promising as it avoids powder-related issues, but still requires stable melt pool control, mitigation of vaporization effects, and feasible in-situ wire production. Overall, this work shows, by means of a quantitative analysis and specif ically developed figures of merit, that lunar manufacturing requires careful consideration of resource availability, sustainability, energy constraints, and supply chain design| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Orlandi.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
14.12 MB
Formato
Adobe PDF
|
14.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247536