This thesis investigates how design teams transform behavioral analytics data into actionable insights and implemented improvements within corporate environments. Through an exploratory case study at BPER Banca's Digital Service Design team, this research examines the organizational and technical challenges that prevent effective utilization of behavioral analytics tools, specifically Quantum Metric. Using qualitative methods including semi-structured interviews with four team members representing different roles and expertise levels, the study identifies critical gaps in the insight lifecycle management process. The findings reveal that barriers to data-driven design stem not from analytical capabilities or tool features, but from systemic organizational failures: fragmented documentation practices, absence of centralized insight repositories, inconsistent prioritization frameworks, technical knowledge barriers, and broken implementation tracking mechanisms. In response to these challenges, the research proposes the Data Hub, a comprehensive Notion-based infrastructure system comprising four integrated components: an Insights Repository featuring a five-dimensional quantitative priority scoring framework; a Cookbook of pre-configured analytics segments that democratizes tool access; a Notable Sessions Repository preserving institutional memory; and a Knowledge Base addressing technical knowledge gaps. Preliminary validation through prototype development and self-testing demonstrates the Hub's viability in reducing documentation friction, lowering technical barriers, and establishing objective prioritization criteria. The research contributes to both theory and practice by redirecting attention from data collection and analysis techniques toward the organizational infrastructure required for insight persistence and flow. The findings suggest that effective data-driven design requires not just analytical tools but comprehensive systems for managing the complete insight lifecycle from discovery through documentation, prioritization, implementation, and validation.
Questa tesi indaga come i team di design trasformano i dati di behavioral analytics in insight azionabili e miglioramenti implementati all'interno di contesti aziendali. Attraverso un caso studio esplorativo presso il team Digital Service Design di BPER Banca, questa ricerca esamina le sfide organizzative e tecniche che impediscono l'utilizzo efficace degli strumenti di behavioral analytics, in particolare Quantum Metric. Utilizzando metodi qualitativi tra cui interviste semi-strutturate con quattro membri del team rappresentanti diversi ruoli e livelli di esperienza, lo studio identifica lacune critiche nel processo di gestione del ciclo di vita degli insight. I risultati rivelano che le barriere al design data-driven non derivano dalle capacità analitiche o dalle funzionalità degli strumenti, ma da fallimenti organizzativi sistemici: pratiche di documentazione frammentate, assenza di repository centralizzati per gli insight, framework di prioritizzazione inconsistenti, barriere di conoscenza tecnica e meccanismi di tracciamento dell'implementazione interrotti. In risposta a queste sfide, la ricerca propone il Data Hub, un sistema infrastrutturale completo basato su Notion comprendente quattro componenti integrati: un Insights Repository con un framework di scoring quantitativo a cinque dimensioni; un Cookbook di segmenti analytics preconfigurati che democratizza l'accesso agli strumenti; un Notable Sessions Repository che preserva la memoria istituzionale; e una Knowledge Base che colma le lacune di conoscenza tecnica. La validazione preliminare attraverso lo sviluppo del prototipo e l'auto-testing dimostra la capacità del Hub di ridurre l'attrito nella documentazione, abbassare le barriere tecniche e stabilire criteri di prioritizzazione oggettivi. La ricerca contribuisce sia alla teoria che alla pratica reindirizzando l'attenzione dalle tecniche di raccolta e analisi dei dati verso l'infrastruttura organizzativa necessaria per la persistenza e il flusso degli insight. I risultati suggeriscono che un design data-driven efficace richiede non solo strumenti analitici ma sistemi completi per gestire l'intero ciclo di vita degli insight dalla scoperta attraverso la documentazione, prioritizzazione, implementazione e validazione.
From insights to action: building infrastructure for data-drive design in practice : an exploratory case study within BPER's digital service design team
Dell'Oro, Viola
2024/2025
Abstract
This thesis investigates how design teams transform behavioral analytics data into actionable insights and implemented improvements within corporate environments. Through an exploratory case study at BPER Banca's Digital Service Design team, this research examines the organizational and technical challenges that prevent effective utilization of behavioral analytics tools, specifically Quantum Metric. Using qualitative methods including semi-structured interviews with four team members representing different roles and expertise levels, the study identifies critical gaps in the insight lifecycle management process. The findings reveal that barriers to data-driven design stem not from analytical capabilities or tool features, but from systemic organizational failures: fragmented documentation practices, absence of centralized insight repositories, inconsistent prioritization frameworks, technical knowledge barriers, and broken implementation tracking mechanisms. In response to these challenges, the research proposes the Data Hub, a comprehensive Notion-based infrastructure system comprising four integrated components: an Insights Repository featuring a five-dimensional quantitative priority scoring framework; a Cookbook of pre-configured analytics segments that democratizes tool access; a Notable Sessions Repository preserving institutional memory; and a Knowledge Base addressing technical knowledge gaps. Preliminary validation through prototype development and self-testing demonstrates the Hub's viability in reducing documentation friction, lowering technical barriers, and establishing objective prioritization criteria. The research contributes to both theory and practice by redirecting attention from data collection and analysis techniques toward the organizational infrastructure required for insight persistence and flow. The findings suggest that effective data-driven design requires not just analytical tools but comprehensive systems for managing the complete insight lifecycle from discovery through documentation, prioritization, implementation, and validation.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_12_Dell_Oro.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
79.38 MB
Formato
Adobe PDF
|
79.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/247698