This thesis presents the development and evaluation of a path planning and pilot workload prediction framework for helicopter Search and Rescue (SAR) and Helicopter Emergency Medical Service (HEMS) missions operated in manned–unmanned teaming (MUM-T) configuration. In the proposed concept, a drone flies ahead of the helicopter to detect unexpected obstacles, enabling autonomous trajectory planning. The path planner, implemented in MATLAB, employs RRT*, BiRRT, and Dubins statespace formulations to ensure compliance with helicopter performance constraints. Trajectories are further refined using a Savitzky–Golay smoothing filter to improve curvature continuity while preserving obstacle clearance. A closed-loop simulation environment in Simulink, including a multi-axis Hess pilot model, is used to assess the feasibility of candidate trajectories by analyzing helicopter attitude, control inputs, and a workload index based on the pilot’s aggression factor. Simulation results demonstrate the influence of key planning parameters—such as the maximum connection distance, filter window width, and planning airspeed—on path quality and pilot workload. The study identifies an optimal combination of planning parameters that minimizes workload while maintaining feasible trajectory geometry. The proposed framework provides a quantitative foundation for evaluating and comparing trajectories, supporting the integration of real-time workload prediction in MUM-T mission planning tools. Beyond the specific case of helicopter–drone cooperation, the proposed methodology is scalable and can be extended to broader Advanced Air Mobility (AAM) and Urban Air Mobility (UAM) applications. In the initial phase of AAM and UAM, operations will still involve a human pilot. Thus, the presented framework contributes to developing human-centered autonomy, where trajectory planning and evaluation consider vehicle performance and pilot workload.
Questa tesi presenta lo sviluppo e la valutazione di un framework per il path planning e la predizione del carico di lavoro del pilota applicato a missioni di Search and Rescue (SAR) e Helicopter Emergency Medical Service (HEMS) condotte in configurazione di manned–unmanned teaming (MUM-T). Nel concept proposto, un drone vola in avanscoperta rispetto all’elicottero per individuare ostacoli imprevisti, consentendo una pianificazione autonoma della traiettoria. Il path planner, implementato in MATLAB, impiega formulazioni RRT*, BiRRT e Dubins per garantire il rispetto dei vincoli di prestazione dell’elicottero. Le traiettorie vengono ulteriormente raffinate mediante un filtro Savitzky–Golay, al fine di migliorare la continuità della curvatura preservando al contempo la distanza di sicurezza dagli ostacoli. Un ambiente di simulazione closed-loop sviluppato in Simulink, che include un modello di pilota di Hess multi-asse, è utilizzato per valutare la fattibilità delle traiettorie candidate analizzando l’assetto dell’elicottero, gli input di controllo e un indice di carico di lavoro basato sull'aggression factor del pilota. I risultati di simulazione mostrano l’influenza dei principali parametri di pianificazione — quali la Maximum Connection Distance, l’ampiezza della finestra del filtro e la airspeed pianificata — sulla qualità della traiettoria e sul carico di lavoro del pilota. Lo studio individua una combinazione ottimale dei parametri di pianificazione che consente di minimizzare il carico di lavoro mantenendo una geometria della traiettoria fisicamente realizzabile. Il framework proposto fornisce una base quantitativa per la valutazione e il confronto delle traiettorie, supportando l’integrazione della predizione del carico di lavoro in tempo reale negli strumenti di pianificazione delle missioni MUM-T. Oltre allo specifico caso della cooperazione elicottero–drone, la metodologia proposta è scalabile e può essere estesa a più ampie applicazioni di Advanced Air Mobility (AAM) e Urban Air Mobility (UAM). Nelle fasi iniziali dell’AAM e dell’UAM, le operazioni coinvolgeranno ancora un pilota umano; pertanto, il framework presentato contribuisce allo sviluppo di un’autonomia human-centered, in cui la pianificazione e la valutazione delle traiettorie tengono conto sia delle prestazioni del veicolo sia del carico di lavoro del pilota.
Pilot workload-oriented path planning for manned-unmanned teaming in rotorcraft-uav operations
RONCOLINI, FRANCESCA
2025/2026
Abstract
This thesis presents the development and evaluation of a path planning and pilot workload prediction framework for helicopter Search and Rescue (SAR) and Helicopter Emergency Medical Service (HEMS) missions operated in manned–unmanned teaming (MUM-T) configuration. In the proposed concept, a drone flies ahead of the helicopter to detect unexpected obstacles, enabling autonomous trajectory planning. The path planner, implemented in MATLAB, employs RRT*, BiRRT, and Dubins statespace formulations to ensure compliance with helicopter performance constraints. Trajectories are further refined using a Savitzky–Golay smoothing filter to improve curvature continuity while preserving obstacle clearance. A closed-loop simulation environment in Simulink, including a multi-axis Hess pilot model, is used to assess the feasibility of candidate trajectories by analyzing helicopter attitude, control inputs, and a workload index based on the pilot’s aggression factor. Simulation results demonstrate the influence of key planning parameters—such as the maximum connection distance, filter window width, and planning airspeed—on path quality and pilot workload. The study identifies an optimal combination of planning parameters that minimizes workload while maintaining feasible trajectory geometry. The proposed framework provides a quantitative foundation for evaluating and comparing trajectories, supporting the integration of real-time workload prediction in MUM-T mission planning tools. Beyond the specific case of helicopter–drone cooperation, the proposed methodology is scalable and can be extended to broader Advanced Air Mobility (AAM) and Urban Air Mobility (UAM) applications. In the initial phase of AAM and UAM, operations will still involve a human pilot. Thus, the presented framework contributes to developing human-centered autonomy, where trajectory planning and evaluation consider vehicle performance and pilot workload.| File | Dimensione | Formato | |
|---|---|---|---|
|
pilot_workload_oriented_path_planning.pdf
accessibile in internet per tutti
Dimensione
20.18 MB
Formato
Adobe PDF
|
20.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/248677