This work, carried out at the Space Propulsion Laboratory of Politecnico di Milano (SPLab), aims to investigate the ballistic properties of various HTPB-based hybrid fuel formulations, burning in gaseous oxygen. Experimental analysis were conducted to test several formulations containing two different nano-sized aluminum powders (nominal particle size 100 nm), coded as Al01f and Al07b. The former is an uncoated powder while the latter is a palmitic acid coated powder. The formulations loaded with uncoated aluminum powder contain also carbon black or titanium bioxide as additives, to improve aluminum powder dispersion (lessening cohesion effects) and for mechanical properties enhancement. As a reference for the relative ballistic grading of the investigated formulations, a baseline formulation containig pure HTPB was investigated: the operative conditions were kept constant throughout the experimental campaign, imposing a chamber pressure of 10 bar and an oxydizer mass flux of 70 Nlpm, while using single central-perforated cylindrical fuel samples (internal diameter 4 mm, initial oxydizer specific flux of approx. 130 kg/m2s). Combustion tests were conducted and analyzed with an optical time-resolved technique, developed at SPLab also due to this work. This technique shows that the formulation containing uncoated aluminum powder, in the investigated operative conditions, has the best ballistic properties, with an increase of regression rate, relative to the baseline, of about 17% at 60 kg/m2s and 47% at 80 kg/m2s. The gathered data were then used to evaluate the effects, on the hybrid combustion process, of the radiative heat flux. As a starting point, a convective ballistic model was used: subsequently, this model was corrected with the addition of different radiative components, showing how the radiative flux due to soot and combustion products has a significant impact also on non-metallized formulations. As the results for non-loaded HTPB formulations show, this corrected ballistic model has a good agreement with the analytical data for a wide range of oxidizer fluxes, diverging (about 70-80%) only at the highest fluxes. The presence of aluminum powders and the heat emissions associated with metallic particulate bring to a poorer correlation between experimental and numerical data for metal-loaded formulations, with a marked increase in regression rate also at low oxidizer fluxes.
Il lavoro qui presentato, svolto presso il Laboratorio di Propulsione Spaziale(SPLab) del Politecnico di Milano, ha lo scopo di investigare la balistica di diverse formulazioni di combustibili ibridi a base di HTPB (Hydroxyl-Terminated PolyButadiene), reagenti in ossigeno gassoso. Nell’indagine sperimentale sono state testate diverse formulazioni di combustibile, additivate con due diverse polveri nanometriche di alluminio (entrambe di diametro nominale 100 nm). La prima è una polvere non ricoperta, mentre la seconda presenta un rivestimento di acido palmitico. Le formulazioni con polvere non ricoperta contengono grafite o biossido di titanio per valutare gli effetti di questi additivi sulla dispersione del nano-alluminio. La balistica delle formulazioni additivate è stata caratterizzata, in termini relativi, rispetto ad una formulazione di riferimento (baseline) a base di solo HTPB: le condizioni operative sono state mantenute costanti, imponendo per tutti i test una pressione in camera di combustione di 10bar e una portata massica di ossidante di 70Nlpm, con geometria dei provini a singolo porto centrale circolare (diametro nominale 4mm, flusso specifico iniziale di ossidante circa 130 kg/m2s). Le prove di combustione effettuate sono state trattate mediante tecnica ottica time-resolved, sviluppata presso SPLab anche grazie al contributo del presente lavoro. L’indagine tramite questa tecnica ha permesso di evidenziare come, nelle condizioni operative investigate, il combustibile contenente polvere di alluminio non rivestita e grafite sia quello che presenta le migliori caratteristiche balistiche, con un incremento della velocità di regressione, rispetto ad HTPB puro, del 17% a 60 kg/m2s di flusso specifico di ossidante e del 47% a 80 kg/m2s. I dati raccolti nel corso dell’indagine sperimentale sono stati poi utilizzati per valutare gli effetti del flusso termico radiativo sul processo di combustione ibrida. Punto di partenza del lavoro è stato l’implementazione di un modello balistico puramente convettivo, cui sono stati successivamente aggiunti diversi contributi: il contributo radiativo derivante da fuliggine e prodotti di combustione risulta sensibile, nelle condizioni analizzate, anche per formulazioni non metallizzate. I risultati dimostrano come, per formulazioni a base di HTPB puro, questo modello balistico corretto segua con buona precisione i dati analitici, per discostarsene (di circa il 70-80%) solamente a flussi elevati. Per formulazioni alluminizzate, invece, l’incremento del contributo radiativo dovuto alla presenza di polveri di alluminio porta ad un evidente discrepanza rispetto ai dati previsti dal modello implementato, con un aumento notevole della velocità di regressione anche a bassi valori del flusso di ossidante, per via delle emissioni di particolato metallico.
Effetti dello scambio termico radiativo in un microcombustore ibrido
FANTON, LUCIANO
2010/2011
Abstract
This work, carried out at the Space Propulsion Laboratory of Politecnico di Milano (SPLab), aims to investigate the ballistic properties of various HTPB-based hybrid fuel formulations, burning in gaseous oxygen. Experimental analysis were conducted to test several formulations containing two different nano-sized aluminum powders (nominal particle size 100 nm), coded as Al01f and Al07b. The former is an uncoated powder while the latter is a palmitic acid coated powder. The formulations loaded with uncoated aluminum powder contain also carbon black or titanium bioxide as additives, to improve aluminum powder dispersion (lessening cohesion effects) and for mechanical properties enhancement. As a reference for the relative ballistic grading of the investigated formulations, a baseline formulation containig pure HTPB was investigated: the operative conditions were kept constant throughout the experimental campaign, imposing a chamber pressure of 10 bar and an oxydizer mass flux of 70 Nlpm, while using single central-perforated cylindrical fuel samples (internal diameter 4 mm, initial oxydizer specific flux of approx. 130 kg/m2s). Combustion tests were conducted and analyzed with an optical time-resolved technique, developed at SPLab also due to this work. This technique shows that the formulation containing uncoated aluminum powder, in the investigated operative conditions, has the best ballistic properties, with an increase of regression rate, relative to the baseline, of about 17% at 60 kg/m2s and 47% at 80 kg/m2s. The gathered data were then used to evaluate the effects, on the hybrid combustion process, of the radiative heat flux. As a starting point, a convective ballistic model was used: subsequently, this model was corrected with the addition of different radiative components, showing how the radiative flux due to soot and combustion products has a significant impact also on non-metallized formulations. As the results for non-loaded HTPB formulations show, this corrected ballistic model has a good agreement with the analytical data for a wide range of oxidizer fluxes, diverging (about 70-80%) only at the highest fluxes. The presence of aluminum powders and the heat emissions associated with metallic particulate bring to a poorer correlation between experimental and numerical data for metal-loaded formulations, with a marked increase in regression rate also at low oxidizer fluxes.File | Dimensione | Formato | |
---|---|---|---|
2011_10_Fanton.pdf
non accessibile
Descrizione: Testo completo della tesi
Dimensione
18.19 MB
Formato
Adobe PDF
|
18.19 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/25281