It is universally acknowledged that buildings contribute to a very significant extent to the world energy demand. It is also recognised that said contribution can be dramatically reduced by acting along two main directions: to employ better materials, construction techniques, climatisation devices, lighting, appliances, while the second is to adopt improved control and energy management policies. In such a scenario, this dissertation deals with the definition and realisation of a modelling and simulation paradigm suitable for supporting all the steps of so complex a problem as the design of a new energy efficient building or neighbourhood, and also the refurbishment of an existing one in a view to reducing its energy footprint. As an important peculiarity of the work, it is to be noticed that despite the presented research is said to refer to ``buildings'' for brevity, in fact the installed plants are considered as well. This makes the obtained results applicable also in other domains. In this respect, it is worth noticing right from the beginning that one of the most significant barriers to energy efficient building (re)design is that buildings are complex systems, the energy performance of which is affected by the interaction of several parts and phenomena. The design of such complex and heterogeneous systems apparently needs to be supported by computer aided tools. In fact, during the past 50 years, a wide variety of building energy simulation programs have been developed, and some are nowadays commonly in use throughout the building energy community. However, many experts wonder if these tools will be able to address the future needs in an effective way. In recent years, new modelling and simulation techniques have gained interest in the scientific and professional communities of a variety of fields. The aim of this work is to exploit these techniques so as to provide models, and modelling methodologies, to overcome the main shortcomings of the Energy and Building Performance Simulation tools presently available. As such, the contribution of this dissertation can be summarised as follows. (i) It is shown how to use OOMS to represent in a unitary framework phenomena that would otherwise call for different simulation and analysis tools, to the detriment of a coordinated and whole-system, approach. The proposed general ideas are exemplified by addressing and solving (among others) maybe the toughest problem of this type, i.e., the modelling and simulation of large air volumes. (ii) The same ideas, though differently declined, are shown to be capable of accommodating for a reliable representation of control systems. In fact, if properly optimised can provide significant energy performance improvements, but such an optimisation is hardly possible if the building and its controls cannot be represented and simulated jointly. (iii) The principles of OOMS are exploited so as to allow for models of scalable detail level, which permits to tailor the simulation model complexity to any particular study at hand, concentrating on the relevant parts of the system and employing simple - thus computationally fast - descriptions of the rest. It is worth noticing that the possibility of scaling the detail level is highly beneficial also in a view to have the simulation tool follow the entire life cycle of a project. (iv) Several simulation studies are proposed and discussed, to better explain the presented ideas and to show their actual
Ad oggi, è stato ampiamente riconosciuto che il consumo energetico su scala globale dipende in larga parte dal consumo degli edifici. E' stato anche osservato che il loro consumo possa essere notevolmente ridotto agendo in due direzioni principali: l'utilizzo di materiali più efficienti dal punto di vista energetico, migliorare le tecniche di costruzione, i dispositivi per la climatizzazione, eccetera; mentre la seconda, prevede l'adozione di politiche per il controllo e gestione dell'energia. All'interno dello scenario esposto, la tesi si occupa dello sviluppo di modelli e di paradigmi modellistici che siano in grado di supportare il difficile problema della progettazione di edifici (o raggruppamenti di essi) al alta efficienza energetica; senza precludere la ristrutturazione ed il miglioramento dell'esistente. Una caratteristica distintiva del lavoro è che nonostante si parli di edifici, in realtà l'analisi si rivolge anche agli impianti contenuti al loro interno. Questo aspetto rende i risultati ottenuti applicabili anche ad altri contesti. E' importante sottolineare che uno dei limiti principali nella progettazione (o eventuali riprogettazioni) degli edifici ad elevata efficienza energetica, è la complessità dell'edificio inteso come sistema, le cui performance sono determinate dalle interazioni dei svariati sottosistemi che lo compongono. Pertanto, la progettazione di un sistema così complesso ed eterogeneo, per essere efficace deve essere supportata da strumenti informatici. Per questo motivo, negli ultimi 50 anni sono stati sviluppati molti software per la simulazione delle performance energetiche degli edifici, e molti di questi sono ancora in uso all'interno della comunità dei progettisti. Tuttavia, molti esperti si chiedono se questi strumenti saranno in grado di affrontare le nuove sfide in modo efficace. Negli ultimi anni, nuove tecniche per la modellistica e simulazione hanno preso piede in molti ambiti sia nel campo scientifico che industriale. L'obiettivo della tesi è di sfruttare i principi delle tecniche sopracitate in modo da fornire dei modelli -- e più in astratto metodologie modellistiche -- che siano in grado di risolvere i principali problemi dei software per la simulazione dei consumi energetici degli edifici. Pertanto, i contributi di questo lavoro sono riassunti in seguito. (i) Mostrare come integrare in un unico framework problemi che altrimenti richiederebbero l'ausilio di diversi strumenti di simulazione, a svantaggio della simulazione d'insieme dell'edificio. Le idee proposte sono esemplificate mostrando come integrare uno dei punti più critici, la simulazione dell'aria all'interno di grandi spazi. (ii) Le stesse idee, sebbene applicate in un contesto completamente diverso, si dimostrano in grado di rappresentare in modo realistico i sistemi di controllo. Infatti, le performance energetiche potrebbero essere migliorate significativamente se i sistemi di controllo fossero accuratamente ottimizzati. Tuttavia, l'ottimizzazione risulta impossibile solo se l'edificio ed il sistema di controllo possono essere simulati contemporaneamente. (iii) I principi della modellistica Object-Oriented sono stati sfruttati per la realizzazione di modelli aventi diversi livelli di dettaglio. Tali modelli permettono l'adattamento del modello di simulazione a una qualsiasi delle fasi di progetto, concentrandosi sulla parte in questione e semplificando le altre. E' evidente che la possibilità di adattare il livello di dettaglio dei modelli porti grandi benefici al flusso di progettazione, presentandosi come uno strumento in grado di seguirne il ciclo completo. (iv) Le idee presentate nella tesi sono state supportate da molte applicazioni e simulazioni che esemplificano l'utilizzo delle tecniche proposte, evidenziandone l'applicabilità ed il potenziale.
Efficient modelling and simulation techniques for energy related system level studies in buildings
BONVINI, MARCO
Abstract
It is universally acknowledged that buildings contribute to a very significant extent to the world energy demand. It is also recognised that said contribution can be dramatically reduced by acting along two main directions: to employ better materials, construction techniques, climatisation devices, lighting, appliances, while the second is to adopt improved control and energy management policies. In such a scenario, this dissertation deals with the definition and realisation of a modelling and simulation paradigm suitable for supporting all the steps of so complex a problem as the design of a new energy efficient building or neighbourhood, and also the refurbishment of an existing one in a view to reducing its energy footprint. As an important peculiarity of the work, it is to be noticed that despite the presented research is said to refer to ``buildings'' for brevity, in fact the installed plants are considered as well. This makes the obtained results applicable also in other domains. In this respect, it is worth noticing right from the beginning that one of the most significant barriers to energy efficient building (re)design is that buildings are complex systems, the energy performance of which is affected by the interaction of several parts and phenomena. The design of such complex and heterogeneous systems apparently needs to be supported by computer aided tools. In fact, during the past 50 years, a wide variety of building energy simulation programs have been developed, and some are nowadays commonly in use throughout the building energy community. However, many experts wonder if these tools will be able to address the future needs in an effective way. In recent years, new modelling and simulation techniques have gained interest in the scientific and professional communities of a variety of fields. The aim of this work is to exploit these techniques so as to provide models, and modelling methodologies, to overcome the main shortcomings of the Energy and Building Performance Simulation tools presently available. As such, the contribution of this dissertation can be summarised as follows. (i) It is shown how to use OOMS to represent in a unitary framework phenomena that would otherwise call for different simulation and analysis tools, to the detriment of a coordinated and whole-system, approach. The proposed general ideas are exemplified by addressing and solving (among others) maybe the toughest problem of this type, i.e., the modelling and simulation of large air volumes. (ii) The same ideas, though differently declined, are shown to be capable of accommodating for a reliable representation of control systems. In fact, if properly optimised can provide significant energy performance improvements, but such an optimisation is hardly possible if the building and its controls cannot be represented and simulated jointly. (iii) The principles of OOMS are exploited so as to allow for models of scalable detail level, which permits to tailor the simulation model complexity to any particular study at hand, concentrating on the relevant parts of the system and employing simple - thus computationally fast - descriptions of the rest. It is worth noticing that the possibility of scaling the detail level is highly beneficial also in a view to have the simulation tool follow the entire life cycle of a project. (iv) Several simulation studies are proposed and discussed, to better explain the presented ideas and to show their actualFile | Dimensione | Formato | |
---|---|---|---|
2013_02_PhD_Bonvini.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
16.5 MB
Formato
Adobe PDF
|
16.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/74161