The larger availability and lower cost of coal, in respect to other fossil fuels, make it a leading energy resource for the power generation in the world, especially during economic crises as the actual one. Unfortunately, coal is a source of environmental concern not only because of its strong greenhouse impact but also because of the emission of nitrogen and sulfur oxides and the formation of aerosol particles. For these reasons “clean coal” technologies are of intense technological interest nowadays. Among these different technologies, the oxy-fuel combustion is the most interesting: air is substituted with an O2/CO2 mixture and thus numerous gas properties such as density, heat capacity, diffusivity and gas emissivity change with consequences on the coal reactivity. Coal combustion is a multi-phase and multi-scale complex process which involves several species (gas, tar and char), different kinetics mechanisms (devolatilization, heterogeneous reactions, secondary gas phase reactions) as well as transport phenomena at both the particle and the reactor scale. Several features of the coal combustion process have been analyzed in this work, with particular attention to the kinetic mechanism of pyrolysis and oxidations. The most important source of the SOx and NOx during the solid fuel combustion is the “fuel” mechanism. Opportune mechanisms of pyrolysis have been developed in order to predict the main precursors of the NOx and SOx. Generally the char fraction varies between 30 and 70% by weight (depending on the nature of the coal and operating conditions), with a heating value in the range 6000-8000 kcal/kg. Since the char oxidation and gasification reactions are the rate determining steps of the coal combustion, an improved knowledge of the mechanisms involved in such processes can lead to an increase in the efficiency of the combustion plants. A careful analysis of the elemental composition of the char residue has allowed the development of a kinetic mechanism of char heterogeneous reactions. The mechanism of pyrolysis and oxidations has been applied in the study of single coal particle combustion in different mixture (O2/N2 and O2/CO2). At high temperature conditions, the heat and mass resistance can become the rate determining step of the solid combustion. An opportune mathematical model has been developed to analyze the effect of the transport phenomena within the particle. The CFD instruments offers the possibility to approach complex combustion systems and to improve the efficiencies and to control the pollutant emissions. The direct coupling of detailed chemistry and CFD simulations is still prohibitive, especially in the multi-phase reactive system. For this reason, it is important to develop simple but reliable kinetic mechanisms. Two different simplified kinetic mechanisms have been developed, one for the pyrolysis of coal and one for the secondary gas phase reactions of the volatile matter. The models were valuated through the comparison with experimental data and with the respective detailed kinetic models. Finally, these models have been employed in a CFD study of oxy-coal pulverized furnace through the use of commercial fluid-dynamics codes.
Il carbone è un’importante risorsa energetica mondiale, grazie alla sua ampia distribuzione, alla sua disponibilità, ed ai bassi costi. Sfortunatamente, il carbone è una sorgente a forte impatto ambientale, non solo a causa delle emissioni di CO2 ma anche a causa dell’importanti emissione di ossidi di azoto e di zolfo. Per queste ragioni, si stanno sviluppando e affinando nuove tecnologie in grado di ridurre il suo impatto ambientale. Tra queste, la più promettente è l’ossi-combustione: l’aria è sostituita da una miscela di O2 and CO2 e di conseguenza numerose proprietà gassose cambiano, come la densità, la diffusività, l’emissività, influenzando la reattività del carbone. La combustione del carbone è un processo multi-fase, multi-scale e multi-componente che coinvolge molti composti (gas, liquidi, solidi), diversi aspetti cinetici (devolatilizzazione, reazioni eterogenee, reazioni secondarie in fase gas) cosi come fenomeni di trasporto sia alla scala della particella sia alla scala del reattore. Diverse caratteristiche della combustione del carbone sono stati analizzati in questo lavoro, con particolare attenzione agli aspetti cinetici di pirolisi e di ossidazione. Durante la combustione del carbone i più importanti termini sorgenti di SOx e NOx sono i cosiddetti “fuel mechanism”. Opportuni modelli di pirolisi sono stati sviluppati con l’obiettivo di predire i principali precursori di SOx e NOx. Un importante aspetto della combustione del carbone riguarda le reazioni eterogenee del char. L’ossidazione del char rappresenta il fattore limitante della combustione del carbone e di conseguenza un miglioramento della conoscenza degli aspetti chimico-fisici coinvolti durante questo processo può condurre ad un incremento dell’efficienza degli impianti di combustione a polverino di carbone. Per queste ragioni è stata condotta una analisi della composizione elementare del char con l’obiettivo di sviluppare un modello cinetico di ossidazione e gasificazione del char. Il modello di pirolisi e di ossidazione è stato applicato allo studio della combustione di una singola particella di carbone in diverse miscele O2/N2 e O2/CO2. Ad alta temperatura, le resistenze al trasporto materiale ed energetico possono diventare il fattore controllante il processo di combustione. Un opportuno modello matematico è stato sviluppato per analizzare l’interazione tra la cinetica ed i fenomeni di trasporto. I codici di calcolo fluidodinamico offrono la possibilità di approcciare complessi sistemi di combustione. Il diretto accoppiamento tra la cinetica dettagliata e le simulazioni CFD è ancora proibitivo, soprattutto per i sistemi reagenti multi-fase. Per questa ragione, è importante sviluppare modello semplici ma allo stesso tempo affidabili. In questo lavoro di tesi sono stati sviluppati due diversi meccanismi cinetici semplificati, uno riguardante la pirolisi del carbone e l’altro le reazioni secondarie in fase gas. Questi modelli sono stati impiegati nello studio fluidodinamico di una fornace a polverino di carbone in condizioni di ossi-combustione.
Kinetic model of coal combustion
MAFFEI, TIZIANO
Abstract
The larger availability and lower cost of coal, in respect to other fossil fuels, make it a leading energy resource for the power generation in the world, especially during economic crises as the actual one. Unfortunately, coal is a source of environmental concern not only because of its strong greenhouse impact but also because of the emission of nitrogen and sulfur oxides and the formation of aerosol particles. For these reasons “clean coal” technologies are of intense technological interest nowadays. Among these different technologies, the oxy-fuel combustion is the most interesting: air is substituted with an O2/CO2 mixture and thus numerous gas properties such as density, heat capacity, diffusivity and gas emissivity change with consequences on the coal reactivity. Coal combustion is a multi-phase and multi-scale complex process which involves several species (gas, tar and char), different kinetics mechanisms (devolatilization, heterogeneous reactions, secondary gas phase reactions) as well as transport phenomena at both the particle and the reactor scale. Several features of the coal combustion process have been analyzed in this work, with particular attention to the kinetic mechanism of pyrolysis and oxidations. The most important source of the SOx and NOx during the solid fuel combustion is the “fuel” mechanism. Opportune mechanisms of pyrolysis have been developed in order to predict the main precursors of the NOx and SOx. Generally the char fraction varies between 30 and 70% by weight (depending on the nature of the coal and operating conditions), with a heating value in the range 6000-8000 kcal/kg. Since the char oxidation and gasification reactions are the rate determining steps of the coal combustion, an improved knowledge of the mechanisms involved in such processes can lead to an increase in the efficiency of the combustion plants. A careful analysis of the elemental composition of the char residue has allowed the development of a kinetic mechanism of char heterogeneous reactions. The mechanism of pyrolysis and oxidations has been applied in the study of single coal particle combustion in different mixture (O2/N2 and O2/CO2). At high temperature conditions, the heat and mass resistance can become the rate determining step of the solid combustion. An opportune mathematical model has been developed to analyze the effect of the transport phenomena within the particle. The CFD instruments offers the possibility to approach complex combustion systems and to improve the efficiencies and to control the pollutant emissions. The direct coupling of detailed chemistry and CFD simulations is still prohibitive, especially in the multi-phase reactive system. For this reason, it is important to develop simple but reliable kinetic mechanisms. Two different simplified kinetic mechanisms have been developed, one for the pyrolysis of coal and one for the secondary gas phase reactions of the volatile matter. The models were valuated through the comparison with experimental data and with the respective detailed kinetic models. Finally, these models have been employed in a CFD study of oxy-coal pulverized furnace through the use of commercial fluid-dynamics codes.File | Dimensione | Formato | |
---|---|---|---|
PhD _Thesis_Tiziano_Maffei.pdf
accessibile in internet per tutti
Descrizione: PhD Thesis Tiziano Maffei
Dimensione
3.5 MB
Formato
Adobe PDF
|
3.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/74424