High order harmonic generation (HHG) is a nonlinear process triggered by the interaction of an intense femtosecond laser pulse with matter. As a result of this interaction, an electron is released from an atom or a molecule and accelerated by the electric field of the pulse; due to the rapid variation of the laser field the electron is brought back towards the parent ion, where the recombination gives rise to the emission, every half-optical cycle, of the energy it acquired in the continuum, in the form of extreme ultraviolet (XUV) radiation. HHG is of considerable interest for two main reasons. On one hand, the nature of the process, temporally confined to a fraction of the optical cycle of the driving laser, allows the generation of an attosecond pulse train (discrete spectrum, consisting of odd harmonics of the frequency of the laser). On the other hand, the recombination of the electron with the parent ion turns out to be a very sensitive probe of the wave function (orbital) of the bound state of the molecule in which the process occurs. During my PhD I have dealt with both the aforementioned aspects. Exploiting a laser source in the mid-infrared has been possible to demonstrate different gating techniques of the HHG process, in order to obtain an isolated attosecond pulse. In particular, by combining two laser pulses at 1350 nm and 1750 nm, with a duration of 35 fs and 32 fs, a continuous spectrum of XUV radiation has been obtained, corresponding to the generation of a single attosecond pulse in argon, krypton and xenon, extending to a maximum photon energy of 160 eV. This mechanism is based on the control of electronic trajectories through the shaping of the electric field, obtained by combining the two pulses in two different configurations: in parallel and perpendicular polarizations. Concerning the imaging of molecular orbitals, it was possible to tomographically reconstruct the highest occupied molecular orbital (HOMO) of the carbon dioxide and acetylene molecules. The technique we developed is based on the acquisition of HHG spectra for different delays between two pulses, where the first aligns the molecules in the space, while the latter generates the harmonic radiation, in order to obtain HHG spectra from molecules with a different angular distribution. By means of the implementation of a reconstruction algorithm was then possible to retrieve the structure of the HOMO from the HHG spectra. This result allowed to extend the concept of orbital tomography to molecules with more than two constituent atoms (that was, up to now, state of the art) and to refine the approximations so far necessary for the reconstruction. Moreover, given the general validity of the technique, our results have pioneered the application of this concept to more complex molecules and to the time-resolved observation of the structural dynamics of molecular orbitals.
La generazione di armoniche di ordine elevato (HHG) è un fenomeno nonlineare innescato dall’interazione di un impulso laser a femtosecondi intenso con la materia. Per effetto di questa interazione, un elettrone viene liberato dal nucleo di appartenenza e accelerato dal campo elettrico dell’impulso; in seguito alla rapida variazione del campo laser l’elettrone viene ricondotto verso lo ione parente, dove la ricombinazione dà luogo all’emissione, ad ogni semi-ciclo ottico, dell’energia acquisita nel continuo sotto forma di radiazione nell’ultravioletto estremo (XUV). Esso risulta di notevole interesse per un duplice motivo. Da un lato, la natura del processo, relegato temporalmente ad una frazione del ciclo ottico della radiazione laser, consente la generazione di un treno di impulsi ad attosecondi (spettro discreto, costituito da armoniche dispari della frequenza del laser); dall’altro, la ricombinazione dell’elettrone con lo ione parente risulta essere una sonda estremamente sensibile della funzione d’onda (orbitale) dello stato legato della molecola in cui il processo avviene. Nell’arco della mia attività di dottorato mi sono occupato di entrambi gli aspetti sopra citati. Sfruttando una sorgente laser nel medio infrarosso è stato possibile dimostrare diverse tecniche di gating del processo di HHG al fine di ottenere un impulso isolato ad attosecondi. In particolare, combinando due impulsi laser a 1350 nm e 1750 nm, di durata di 35 fs e 30 fs, si è ottenuto uno spettro continuo di radiazione XUV, corrispondente all’emissione di un singolo impulso ad attosecondi, in Argon, Kripton e Xenon, raggiungendo un’energia massima dei fotoni di 160 eV. Il meccanismo si basa sul controllo delle traiettorie elettroniche attraverso lo shaping del campo elettrico, ottenuto combinando i due impulsi in due diverse configurazioni: in polarizzazione parallela e perpendicolare. Per quanto riguarda la tematica dell’imaging degli orbitali molecolari, è stato possibile ricostruire tomograficamente l’ultimo orbitale occupato (HOMO) delle molecole di CO2 (anidride carbonica) e C2H2 (acetilene). La tecnica utilizzata si basa sull’acquisizione di spettri HHG per diversi ritardi tra due impulsi, dove il primo allinea le molecole nello spazio, mentre il secondo genera la radiazione di armoniche, al fine di ottenere spettri HHG da molecole con una distribuzione angolare differente. Per merito dell’implementazione di un algoritmo di ricostruzione è stato poi possibile risalire dagli spettri HHG alla struttura dell’HOMO della molecola. Questo risultato ha permesso di estendere il concetto di tomografia dell’orbitale a molecole con più di due atomi costituenti (fino ad oggi stato dell’arte) e raffinato le approssimazioni necessarie alla ricostruzione. Inoltre, data la validità generale della tecnica, ha aperto la strada all’applicazione di questo concetto a molecole più complesse ed all’osservazione risolta in tempo delle dinamiche strutturali degli orbitali molecolari.
High order harmonic generation driven by a mid-infrared laser source : a tool for attosecond science and molecular spectroscopy
NEGRO, MATTEO
Abstract
High order harmonic generation (HHG) is a nonlinear process triggered by the interaction of an intense femtosecond laser pulse with matter. As a result of this interaction, an electron is released from an atom or a molecule and accelerated by the electric field of the pulse; due to the rapid variation of the laser field the electron is brought back towards the parent ion, where the recombination gives rise to the emission, every half-optical cycle, of the energy it acquired in the continuum, in the form of extreme ultraviolet (XUV) radiation. HHG is of considerable interest for two main reasons. On one hand, the nature of the process, temporally confined to a fraction of the optical cycle of the driving laser, allows the generation of an attosecond pulse train (discrete spectrum, consisting of odd harmonics of the frequency of the laser). On the other hand, the recombination of the electron with the parent ion turns out to be a very sensitive probe of the wave function (orbital) of the bound state of the molecule in which the process occurs. During my PhD I have dealt with both the aforementioned aspects. Exploiting a laser source in the mid-infrared has been possible to demonstrate different gating techniques of the HHG process, in order to obtain an isolated attosecond pulse. In particular, by combining two laser pulses at 1350 nm and 1750 nm, with a duration of 35 fs and 32 fs, a continuous spectrum of XUV radiation has been obtained, corresponding to the generation of a single attosecond pulse in argon, krypton and xenon, extending to a maximum photon energy of 160 eV. This mechanism is based on the control of electronic trajectories through the shaping of the electric field, obtained by combining the two pulses in two different configurations: in parallel and perpendicular polarizations. Concerning the imaging of molecular orbitals, it was possible to tomographically reconstruct the highest occupied molecular orbital (HOMO) of the carbon dioxide and acetylene molecules. The technique we developed is based on the acquisition of HHG spectra for different delays between two pulses, where the first aligns the molecules in the space, while the latter generates the harmonic radiation, in order to obtain HHG spectra from molecules with a different angular distribution. By means of the implementation of a reconstruction algorithm was then possible to retrieve the structure of the HOMO from the HHG spectra. This result allowed to extend the concept of orbital tomography to molecules with more than two constituent atoms (that was, up to now, state of the art) and to refine the approximations so far necessary for the reconstruction. Moreover, given the general validity of the technique, our results have pioneered the application of this concept to more complex molecules and to the time-resolved observation of the structural dynamics of molecular orbitals.File | Dimensione | Formato | |
---|---|---|---|
2013_03_PhD_Negro.pdf
solo utenti autorizzati dal 07/02/2014
Descrizione: Testo della tesi
Dimensione
49.8 MB
Formato
Adobe PDF
|
49.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/74622