This Thesis aims at defining a generalized approach for the study of combustion from the standpoint of the mass and energy balances of the process. In fact, in the study of energy conversion systems where the combustion of conventional fuels (typically hydrocarbons) occurs, the study approach commonly adopted is based on the assumption of complete oxidation of the fuels to stable combustion products (CO2, H2O, etc.). This approach is very powerful in terms of computational effectiveness, since it relies only on the stoichiometry of the reactions. Moreover it is often accurate “enough” for the purpose of evaluating mass and energy balances, since combustion is typically carried out in ways such to achieve as much as possible the complete oxidation of fuels. This approach is commonly used also to define the conventional energy content of fuels, i.e. the Lower and the Higher Heating Values (LHV and HHV), as well as the maximum producible work from the reversible exploitation of fuels, i.e. their exergy. The adoption of this approach to study the “combustion” of unconventional fuels, maybe with atypical combustive agents, is not straightforward. Thus also the definition of the energy or exergy content of these fuels becomes difficult. A generalized approach to evaluate the chemical exergy of any substance was proposed by Szargut and then improved by other authors. Analogously, in this work a similar approach has been defined to evaluate the chemical energy of any substance, i.e. its LHV and HHV. De facto, this approach represent an extension of the aforementioned “complete oxidation” approach, which has been named “Generalized complete combustion” approach. This calculation method has been defined in mathematical terms by identifying all the required basic elements, their characteristics and their mutual connections. The solution of the mathematical problem arising from the application of such a method has been carried out applying the Linear programming techniques, in particular the Simplex algorithm. The main outcome of this work is a computer-based tool to carry out the first and second law analyses of complex energy conversion systems. The final part of the Thesis deals with the application of such a tool to some case studies. The energy recovery of Black Liquor (BL) with different technologies has been considered. BL is a residual material produced by the pulp and paper industry and typically used inside such facilities to provide energy to the production processes. The conventional direct combustion of BL in a Tomlinson boiler has been coherently compared with two innovative technologies based on BL gasification in terms of first and second law efficiencies. Such comparisons have been carried out by means of the generalized complete combustion approach developed in this work.
L’obiettivo primario di questa Tesi è la definizione di un approccio per lo studio della combustione dal punto di vista dei bilanci di massa e di energia del processo. Infatti, nello studio dei sistemi di conversione energetica che trattano combustibili convenzionali (tipicamente idrocarburi), l’approccio comunemente adottato è basato sull’assunzione di completa ossidazione dei combustibili a formare prodotti di combustione stabili (CO2, H2O, etc.). Quest’approccio è estremamente potente in termini di efficacia computazionale, poiché si basa esclusivamente sulla stechiometria delle reazioni. Inoltre risulta spesso “sufficientemente” accurato al fine della valutazione dei bilanci di massa e di energia, poiché la combustione è tipicamente condotta in modo tale da ottenere l'ossidazione più completa possibile dei combustibili. Tale approccio è comunemente usato anche per definire il contenuto energetico convenzionale dei combustibili, ossia il Potere Calorifico Inferiore e Superiore (PCI e PCS), così come per definire il massimo lavoro producibile mediante lo sfruttamento reversibile dei combustibili, ovvero la loro exergia. L’adozione di questo approccio per lo studio della “combustione” di combustibili non convenzionali, magari con comburenti atipici, non è immediata. Quindi anche la definizione dei contenuti energetici ed exergetici di tali combustibili risulta difficoltosa. Un approccio generalizzato per la valutazione dell’exergia chimica di qualsiasi sostanza fu proposto da Szargut e poi migliorato da altri autori. Analogamente, in questo lavoro si è definito un approccio simile per valutare il contenuto energetico di qualsiasi sostanza, ossia i corrispondenti PCI e PCS. Di fatto, questo approccio rappresenta un’estensione del precedentemente descritto approccio di “ossidazione completa”, che è stato denominato “Modello Generalizzato di Combustione Completa” (MGCC). Questo metodo di calcolo è stato definito in termini matematici, identificando tutti gli elementi base, le loro caratteristiche e le mutue relazioni. La soluzione del problema matematico che nasce dall’applicazione di tale metodo è stata effettuata applicando le tecniche di Programmazione Lineare, in particolare l’algoritmo del Simplesso. Il risultato principale di questo lavoro è uno strumento informatico in grado di svolgere analisi di primo e di secondo principio di complessi sistemi di conversione energetica. La parte finale della Tesi si occupa dell’applicazione di tale strumento ad un caso di studio: il recupero energetico del Black Liquor (BL). Il BL è un materiale residuo prodotto dall’industria della polpa di legno e della carta, tipicamente utilizzato all’interno degli stabilimenti per fornire energia ai processi produttivi. La combustione diretta del BL in una caldaia Tomlison convenzionale è stata coerentemente confrontata in termini di rendimento di primo e di secondo principio con due tecnologie innovative basate sulla gassificazione del BL. Tali confronti sono stati condotti mediante il MGCC sviluppato in questo lavoro.
Modello generalizzato di combustione completa integrato con le analisi di primo e secondo principio degli impianti di potenza
PETRACCI, STEFANO
2011/2012
Abstract
This Thesis aims at defining a generalized approach for the study of combustion from the standpoint of the mass and energy balances of the process. In fact, in the study of energy conversion systems where the combustion of conventional fuels (typically hydrocarbons) occurs, the study approach commonly adopted is based on the assumption of complete oxidation of the fuels to stable combustion products (CO2, H2O, etc.). This approach is very powerful in terms of computational effectiveness, since it relies only on the stoichiometry of the reactions. Moreover it is often accurate “enough” for the purpose of evaluating mass and energy balances, since combustion is typically carried out in ways such to achieve as much as possible the complete oxidation of fuels. This approach is commonly used also to define the conventional energy content of fuels, i.e. the Lower and the Higher Heating Values (LHV and HHV), as well as the maximum producible work from the reversible exploitation of fuels, i.e. their exergy. The adoption of this approach to study the “combustion” of unconventional fuels, maybe with atypical combustive agents, is not straightforward. Thus also the definition of the energy or exergy content of these fuels becomes difficult. A generalized approach to evaluate the chemical exergy of any substance was proposed by Szargut and then improved by other authors. Analogously, in this work a similar approach has been defined to evaluate the chemical energy of any substance, i.e. its LHV and HHV. De facto, this approach represent an extension of the aforementioned “complete oxidation” approach, which has been named “Generalized complete combustion” approach. This calculation method has been defined in mathematical terms by identifying all the required basic elements, their characteristics and their mutual connections. The solution of the mathematical problem arising from the application of such a method has been carried out applying the Linear programming techniques, in particular the Simplex algorithm. The main outcome of this work is a computer-based tool to carry out the first and second law analyses of complex energy conversion systems. The final part of the Thesis deals with the application of such a tool to some case studies. The energy recovery of Black Liquor (BL) with different technologies has been considered. BL is a residual material produced by the pulp and paper industry and typically used inside such facilities to provide energy to the production processes. The conventional direct combustion of BL in a Tomlinson boiler has been coherently compared with two innovative technologies based on BL gasification in terms of first and second law efficiencies. Such comparisons have been carried out by means of the generalized complete combustion approach developed in this work.File | Dimensione | Formato | |
---|---|---|---|
TESI.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
2.5 MB
Formato
Adobe PDF
|
2.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/79948