The CFD anlysis to study reactant and not reactant fluxes allows to analyze phenomena and features that are difficult to study experimentally. About reactant flux, combustion kinetic mechanisms play an important role. For this reason the development of detailed reduced kinetic scheme (schele- tal mechanism), allows to find a compromise between accuracy in species prediction and computational power demand. This work uses propane and methane reduced schemes to better understand combustion phenomena in a mesocombustor at 3atm. The thesis work starts with a general introduction about mesocombustors and continues with theorical part about turbolent combustion models. Then, the main aspects related to the computational grid generation are discussed, with particular emphasis on the non-reacting case: the comparison with experimental measurements allowed to analyze the performances of several different turbolence models. After that, combustion with propane/air and methane/air is discussed and a comparison between numerical and experimental results is done. Finally, the most original part of this work is presented; it consists in the development of a refined kinetic mechanism able to predict the chemiluminescent species. The sub-mechanism of the chemiluminescent species OH* and CH* is developed on the basis of a careful literature analysis and then validated using measurements in ideal reactors and laminar flames. Finally, the revised kinetic model is applied to the mesocombustor study and numerical results are compared with experi- mental ones. This work, in conclusion, consists in a complete and detailed combustion analysis, supported by the comparison with experimental results.
L’utilizzo della simulazione CFD per lo studio di flussi reagenti e non per- mette l’analisi dettagliata di fenomeni e aspetti che sarebbero difficilmente analizzabili per via sperimentale. Per quanto riguarda i flussi reagenti, un ruolo fondamentale assumono i meccanismi cinetici di combustione; ciò por- ta allo sviluppo ed all’utilizzo di schemi cinetici dettagliati scheletali, che mirano ad un compromesso tra accuratezza nella predizione delle specie e potenza di calcolo richiesta. Questo lavoro utilizza schemi cinetici ridotti di propano e metano per comprendere meglio i fenomeni di combustione all’in- terno di un mesocombustore in pressione. Il lavoro di tesi incomincia con un’introduzione ai mesocombustori e prosegue con una trattazione teorica dei principali modelli utilizzati per la combustione turbolenta. Successiva- mente vengono trattati gli aspetti preliminari riguardanti la griglia di calcolo utilizzata. Si passa, quindi, all’analisi di un flusso non reagente, che consenta di valutare quale sia il modello di turbolenza che meglio descrive i dati spe- rimentali. Si passa poi all’analisi dei flussi reagenti con miscele propano/aria e metano/aria ed al loro confronto con i dati sperimentali. Infine, viene presentata la parte più originale del lavoro, che consiste nell’utilizzo di mec- canismi cinetici che comprendano la predizione di specie chemiluminescenti. Si sviluppa quindi prima il meccanismo cinetico che consenta la predizione di queste specie, si passa poi alla sua convalida, infine si applica tale modello allo studio del mesocombustore ed al confronto dei risultati con i dati speri- mentali. Il lavoro consente quindi un’analisi completa ed approfondita della combustione, supportata dal confronto con i risultati sperimentali.
Simulazione RANS con schemi cinetici dettagliati di un meso-combustore in pressione.
RIVA, GABRIELE
2011/2012
Abstract
The CFD anlysis to study reactant and not reactant fluxes allows to analyze phenomena and features that are difficult to study experimentally. About reactant flux, combustion kinetic mechanisms play an important role. For this reason the development of detailed reduced kinetic scheme (schele- tal mechanism), allows to find a compromise between accuracy in species prediction and computational power demand. This work uses propane and methane reduced schemes to better understand combustion phenomena in a mesocombustor at 3atm. The thesis work starts with a general introduction about mesocombustors and continues with theorical part about turbolent combustion models. Then, the main aspects related to the computational grid generation are discussed, with particular emphasis on the non-reacting case: the comparison with experimental measurements allowed to analyze the performances of several different turbolence models. After that, combustion with propane/air and methane/air is discussed and a comparison between numerical and experimental results is done. Finally, the most original part of this work is presented; it consists in the development of a refined kinetic mechanism able to predict the chemiluminescent species. The sub-mechanism of the chemiluminescent species OH* and CH* is developed on the basis of a careful literature analysis and then validated using measurements in ideal reactors and laminar flames. Finally, the revised kinetic model is applied to the mesocombustor study and numerical results are compared with experi- mental ones. This work, in conclusion, consists in a complete and detailed combustion analysis, supported by the comparison with experimental results.| File | Dimensione | Formato | |
|---|---|---|---|
|
2013_04_Riva.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
7.36 MB
Formato
Adobe PDF
|
7.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/79950