Aircraft generated noise is nowadays an important, regulation-driven topic of research. Many efforts have been devoted to understand the mechanisms responsible for noise generation and to design effective control strategies to achieve noise reduction. In the present work a system identification of an unforced, subsonic jet was carried out, in order to build a reduced-order model that reproduces the correct pressure dynamics in the near-field of the jet. This is achieved by analyzing experimentally obtained pressure measurements at different axial positions along the jet column. A linear auto-regressive ARMAX model, constructed through an opti- mization process, has been used to simulate the system behavior in the near- field. The goal is reproducing the jet dynamics in this region in response to a given pressure dynamics in the near-nozzle region. Various combinations of the parameters involved in the definition of the model have been tested in order to evaluate its sensitivity. The identified model is found to give satisfactory results, although its performance gets worse as the output signal position is moved downstream, far from the input location. By repeating the identification for different input reference positions, higher accuracy in the reconstruction of the reference signal has been obtained. This confirms recent observations showing that the jet behavior can be considered linear in a region comprised between the near-nozzle zone and the end of the potential core. Subsequently, a classical Proper Orthogonal Decomposition (POD) has been carried out in order to isolate the most energetic structures, and the model identification has been carried out again. This is motivated by re- cent studies where good agreement between the results predicted by linear Parabolised Stability Equations (PSE) and the pressure field reconstructed with the lowest POD modes has been found, in the region downstream the viiviii ABSTRACT potential core. The identification performed on the first POD mode recon- structed signal is able to reproduce the target output signal with a very high degree of accuracy, confirming the linear behavior of the coherent component of the turbulent field in the downstream region.
La regolazione e il controllo dell’inquinamento acustico, dovuto al sempre crescente traffico aereo degli ultimi decenni, sono diventati un fondamentale argomento di ricerca e studio, con l’obiettivo di arrivare ad una esaustiva comprensione dei meccanismi responsabili della produzione di rumore. Lo scopo di questo lavoro ` e di costruire un modello ridotto per la descrizione della dinamica di un getto subsonico, non forzato, attraverso la tecnica del- l’identificazione di sistema. Questa ` e basata su misure di pressione ottenute sperimentalmente attraverso una serie di anelli di microfoni, collocati a dif- ferenti posizioni lungo l’asse longitudinale del getto. In particolare, un modello lineare di tipo ARMAX ` e stato usato per simulare il comportamento del sistema nel near-field, in risposta ad una dinamica nota della pressione nella regione vicina all’ugello. Si ` e svolto nel contempo uno studio della sensitivit` a del modello ai vari parametri che ne definiscono la struttura matematica. Il modello ottenuto permette una soddisfacente ricos- turzione del segnale, anche se l’accordo con l’output di riferimento diminuisce quando l’identificazione viene effettuata per posizioni assiali spostate piu a valle rispetto alla posizione dell’input. Sono state inoltre confermate, con- frontando le prestazioni di modelli ottenuti per segnali di input a diverse posizioni, le osservazioni derivate da recenti studi che mostrano come il com- portamento del getto sia approssimabile a lineare nella regione compresa tra la zona prossima all’ugello e la fine del potential core. Infine, i dati sono stati filtrati, allo scopo di isolare le componenti piu energetiche della dinamica del getto, per mezzo di una decomposizione POD (Proper Orthogonal Decomposition), e l’identificazione ripetuta. Questo tipo di analisi ` e stata motivata da recenti studi che mostrano un buon accordo tra i risultati predetti dalla PSE (Parabolised Stability Equations) e mis- ure sperimentali ricostruite con i modi POD piu bassi, nella regione a valle del potential core. Il modello risultato dall’identificazione basata su dati ricostruiti con il solo primo modo POD, riproduce il segnale di output con un alto livello di accuratezza, confermando il comportamento lineare della componente coerente del campo turbolento del getto.
System identification for the sound field of a subsonic jet
PIANTANIDA, SELENE
2012/2013
Abstract
Aircraft generated noise is nowadays an important, regulation-driven topic of research. Many efforts have been devoted to understand the mechanisms responsible for noise generation and to design effective control strategies to achieve noise reduction. In the present work a system identification of an unforced, subsonic jet was carried out, in order to build a reduced-order model that reproduces the correct pressure dynamics in the near-field of the jet. This is achieved by analyzing experimentally obtained pressure measurements at different axial positions along the jet column. A linear auto-regressive ARMAX model, constructed through an opti- mization process, has been used to simulate the system behavior in the near- field. The goal is reproducing the jet dynamics in this region in response to a given pressure dynamics in the near-nozzle region. Various combinations of the parameters involved in the definition of the model have been tested in order to evaluate its sensitivity. The identified model is found to give satisfactory results, although its performance gets worse as the output signal position is moved downstream, far from the input location. By repeating the identification for different input reference positions, higher accuracy in the reconstruction of the reference signal has been obtained. This confirms recent observations showing that the jet behavior can be considered linear in a region comprised between the near-nozzle zone and the end of the potential core. Subsequently, a classical Proper Orthogonal Decomposition (POD) has been carried out in order to isolate the most energetic structures, and the model identification has been carried out again. This is motivated by re- cent studies where good agreement between the results predicted by linear Parabolised Stability Equations (PSE) and the pressure field reconstructed with the lowest POD modes has been found, in the region downstream the viiviii ABSTRACT potential core. The identification performed on the first POD mode recon- structed signal is able to reproduce the target output signal with a very high degree of accuracy, confirming the linear behavior of the coherent component of the turbulent field in the downstream region.File | Dimensione | Formato | |
---|---|---|---|
2013_12_PIANTANIDA.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
6.97 MB
Formato
Adobe PDF
|
6.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/87204