Ring-opening polymerization (ROP) of L,L-lactide carried out in bulk melt in the presence of stannous octoate as catalyst and 1-dodecanol as co catalyst has been studied through experiments and modeling. The experiments have been carried out firstly in ampoules (micro-experiments) at various temperature conditions with the aim to define the parameters of kinetic model. A comprehensive kinetic model involving reversible catalyst activation, reversible propagation, reversible chain transfer reaction, intermolecular trans esterification and non radical random chain scission has been studied. The corresponding material and population balances have been solved using the method of the moments. The ODE (Ordinary Differential Equation) system obtained was implemented in C++ environment and solved using BzzMath© numerical library. Furthermore a complete Batch reactor model has been developed and PID temperature control and adaptive temperature control have been implemented in order to reach the desired target of the process (polymer molecular weight and monomer conversion). Typical model outputs, such as monomer conversion, average molecular weights, polydispersity index, have been validated with experimental data. A remarkably good agreement has been obtained between model and experimental evidences. The reaction was carried out in a isothermal reactor (macro-experiments) at various reaction conditions: temperature from 140°C to 200°C , monomer to catalyst ratios and cocatalyst to catalyst ratios in order to investigate the influence of this parameters on the properties of the final polymer (Mw, Tm, Tg, crystallinity, etc…). PLA produced was analyzed with different analytical methods: GPC, DSC, TGA, FT-IR, RDX, MEV. Finally in vitro experiments were performed in order to evaluate the biocompatibility of the synthesized polymer.
Il lavoro ha previsto la realizzazione e la modellazione di polimerizzazione in massa dell’L-lattide mediante aperture di anello (ROP) in presenza di Stannous Octoate come catalizzatore e 1-dodecanolo come co-catalizzatore. Gli esperimenti sono stati condotti inizialmente in ampolle (micro-scala) a differenti temperature (tra 140 e 200° C). É stato analizzato un modello cinetico che considera: reazioni reversibili di attivazione del catalizzatore, reazione reversibile di propagazione, reazione reversibile di trasferimento di catena, transesterificazioni molecolari e reazioni random non radicaliche di scissione di catena. I bilanci materiali ed i bilanci di popolazione di catena, sono stati risolti utilizando il metodo dei momenti. Il sistema ODE (Ordinary Differential Equation) ottenuto è stato implementato in ambiente C++ ed è stato risolto mediante l’utilizzo della libreria numerica BzzMath©. E’ stato sviluppato un modello completo di reattore Batch su cui sono stati implementati un controllore PID di temperatura ed un controllore adattativo di temperatura al fine di raggiungere le specifiche di processo desiderate (in termini di peso molecolare finale del polimero ottenuto e conversione del monomero). Le grandezze ottenute dal modello: peso molecolare, conversione e polidispersitá sono stati convalidati utilizzando i valori ottenuti dai dati sperimentali. Infine, la reazione è stata condotta in un reattore isotermo (macro-scala) a differenti condizioni di reazione: temperatura da 140 a 200°C e a differenti rapporti monomero su catalizzatore e cocatalizzatore su catalizzatore, con l’obbiettivo di valutare l’influenza delle condizioni di reazione sulle proprietà finali del polímero prodotto (Mw, Tm, Tg, cristallinità, ecc…). Il PLA sintetizzato è stato analizzato mediante differenti tecniche analitiche : GPC, DSC, TGA, FT-IR, RDX, MEV. Concludendo sono stati condotti esperimenti in vitro in modo da valutare la biocompatibilità del polimero sintetizzato.
Poly(L-Lactide) production for biomedical applications : modeling and simulation of the polymerization process and experimental characterization of the final product
REFINETTI, DAVIDE;SONZOGNI, ALESSIA
2012/2013
Abstract
Ring-opening polymerization (ROP) of L,L-lactide carried out in bulk melt in the presence of stannous octoate as catalyst and 1-dodecanol as co catalyst has been studied through experiments and modeling. The experiments have been carried out firstly in ampoules (micro-experiments) at various temperature conditions with the aim to define the parameters of kinetic model. A comprehensive kinetic model involving reversible catalyst activation, reversible propagation, reversible chain transfer reaction, intermolecular trans esterification and non radical random chain scission has been studied. The corresponding material and population balances have been solved using the method of the moments. The ODE (Ordinary Differential Equation) system obtained was implemented in C++ environment and solved using BzzMath© numerical library. Furthermore a complete Batch reactor model has been developed and PID temperature control and adaptive temperature control have been implemented in order to reach the desired target of the process (polymer molecular weight and monomer conversion). Typical model outputs, such as monomer conversion, average molecular weights, polydispersity index, have been validated with experimental data. A remarkably good agreement has been obtained between model and experimental evidences. The reaction was carried out in a isothermal reactor (macro-experiments) at various reaction conditions: temperature from 140°C to 200°C , monomer to catalyst ratios and cocatalyst to catalyst ratios in order to investigate the influence of this parameters on the properties of the final polymer (Mw, Tm, Tg, crystallinity, etc…). PLA produced was analyzed with different analytical methods: GPC, DSC, TGA, FT-IR, RDX, MEV. Finally in vitro experiments were performed in order to evaluate the biocompatibility of the synthesized polymer.| File | Dimensione | Formato | |
|---|---|---|---|
|
2013_12_Refinetti_Sonzogni.pdf
Open Access dal 26/11/2016
Descrizione: Testo della tesi
Dimensione
4.83 MB
Formato
Adobe PDF
|
4.83 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/88844