ABSTRACT Introduction and Aims Different strategies, like bone substitutes, autograft, allograft, xenograft and distraction osteogenesis, have been employed to substitute bone or accelerate bone regeneration. Nevertheless, each of them still presents some limitations, such as poor availability, reduced osteoinductive properties, risk of reverse reactions, immunogenicity and infections. In the context of bone regenerative medicine, a minimally invasive approach could substitute an open surgery giving as advantages the compliance of the patience and lower damage of tissue. For this aim, injectable materials are required, offering in addition several advantages due to their capacity to fill irregularly shaped defects. Among them, injectable hydrogels are highly swollen three-dimensional matrices than can provide aqueous tissue-like environment. They can be considered as not conventional scaffolds, providing temporary support for cell growth as their high water content facilitates the transfer of nutrients, gases, metabolic waste and cell signaling molecules. For these reasons, this work is focused on the study of injectable hydrogels to promote bone regeneration. Gels based on a natural polymer, pectin, were studied. Pectin properties include anti-inflammatory effects and capability to maintain the cells in a proper environment. Commonly, pectin based hydrogels are obtained employing CaCl2, which is a water soluble salt that instantaneously produces hydrogels. The rapid gelification could be exploited for the formation of particles, but it is not convenient to produce homogeneous gels. Poorly soluble calcium salts can be employed to tailor the crosslinking by controlling their water dissolution. Among poorly soluble salts, calcium phosphates were selected, as hydroxyapatite and β-tricalciumphosphates. Calcium phosphates represent the mineral part of the bone. They are commonly used for bone regeneration, either alone either in combination with other materials. The calcium phosphates were used alone or in combination to study the effect of their different solubility on the rheological properties, values of pH and vitality of cells. For this purposes rheological test, cytocompatibility test, immobilization test of line cells and pH measurement were performed. Since, in a minimally invasive context, the assessment of the injectability of these hydrogels is of primary importance, it was decided to test this property by a texture analyzer and ad hoc developed rheological tests. The use of hydrogels allows, in principle, the loading of growth factors, the exchange of cell metabolites and catabolites, thus enhancing cell encapsulation in a synthetic extracellular matrix. In view of this possible application, the studied gels were proven to evaluate their suitability to support cell immobilization. Materials and Methods The procedure employed for hydrogels preparation was described in the patent WO2012/007917. [24] Briefly, a 6% (w/v) pectin solution was prepared dissolving the power in distilled water, 220 mM mannitol, 0.5 M NaOH and 5M NaOH. The solution was left under stirring for 24 hours in order to obtain the complete dissolution of the powder and thus to avoid the presence of undissolved aggregates. To produce the hydrogels, the crosslinking agent was suspended in water and sonicated for 10 minutes at 25 °C and 35 KHz of frequency. Pectin solution was then mixed with the desired amount of the suspension of the crosslinking agent. Mannitol, thanks to its free radical scavenging property, was successful in reducing the effect of sterilization on the gel and therefore was added to all formulations. Low methoxyl pectin (DE: 37%) was obtained from Herbstreith&Fox. The different calcium phosphates used to prepare the hydrogels are beta-TCP (499963-10G - Sigma Aldrich) and hydroxyapatite in three different sizes: 30 nm produced by sol-gel process by University of Trento, 2.5 μm (Fludinova, Portugal), 30 μm (Eurocoating, Italy). Rheological oscillation measurements of complex viscosity (η*), storage modulus (G’) and loss modulus (G’’) at different oscillation frequencies were performed using AR-1500ex rheometer (TA instrument, USA). In order to evaluate the stability of rheological properties, rheological tests were repeated until 6 months at three different temperatures: 25°C, 30°C and 37°C. To measure the pH of the hydrogels a small quantity of them was put in a Petri dish and a pH-meter (Eutech Instruments Europe BV, Nijkerk, Netherlands) with a double pore slim electrode was employed. The injectability tests were carried out using a texture analyzer (TA XT plus), which consists of a gripper able to push the plunger of the syringe containing the sample of gel, so as to eject the gel at a constant speed. Two biological tests were performed for some of the formulations prepared. In the indirect cytocompatibility test, L929 fibroblast have been put in contact with the extract obtained from the hydrogels in water and then the viability of cells has been investigate with MTT assay. Cytocompatibility was assessed according to ISO method 10993-5. Whereas, the immobilization test consists of immobilizing cells in the forming hydrogel and, after gel dissolution, of counting cells alive and death. Two different immobilization test were carried out, the first to investigate the viability of cells, L929 fibroblasts, in contact with all the samples and find the best one using Trypan Blue Assay, while the second employed more specific bone cells, MG62 osteoblast, to study only the chosen formulation from the previous test (P-mH) performing counting test and MTS assay after the degradation of gels. Results and Discussions In this work pectin based hydrogels, obtained from pectin solution and different calcium phosphates as crosslinkers (HA, beta-TCP), are proposed as injectable scaffold for bone regeneration. Results assess that these systems have properties comparable with those of the other natural based injectable hydrogels already in study, like alginate, chitosan and hyaluronic acid based hydrogels. The effect of the particle size and the different solubility of the crosslinkers were investigated. From the results it could be hypothesized that crosslinkers with lower solubity could cause slower gelation. Similarly, gel stiffness is increased with the solubility of the crosslinker. Hydroxyapatite with the granulometry of 2.5 µm appears not to follow the expected trends, e.g. the gelation time and the rheological properties are higher than expected solely on the basis f the granulometry. These results could be explained with the different morphology of the particles, being formed of aggregates of smaller particles. It was possible to formulate hydrogels by combining the different crosslinkers to obtain hydrogels with specific characteristics. The long-term stability of the hydrogels, stored at room temperature, was assessed up to 6 months. The pH and rheological properties were retained in this time frame. This result opens the possibility to store products based on these gels at room temperature. All the pH of the hydrogels resulted higher than the pH of pectin solution (4.33) and in the range of 4.5-6.1, which could be considered close to the physiological pH and suitable in view of the biocompatibility of the gels. The results of the injectability test (force values under 50N) assessed the possibility for the hydrogels of being used as injectable scaffold. Cytocompatibility and immobilization tests, performed with cells from standardized cell lines, were carried out to study the biocompatibility and cells survival in the hydrogels. Results demonstrated that these systems cause no cytotoxic effect in vitro and provide a suitable environment for the cells. Conclusions The results indicate that it is possible to tailor the rheological characteristics of the hydrogels in view of the final application by controlling the type of crosslinker, its solubility, chemical structure and morphology. These types of hydrogels could be used for different application; hydrogels with long (10-15 minutes) time of gelification could be used as in-situ gelification systems. Hydrogels with a rapid kinetic of gelification could be injected after the gelification occurred if the formulation is adjusted to produce soft gels by controlling the solubility of the crosslinker. A key point of this work, which aims to the minimally invasive context, was to assess the injectability of these systems. In both cases, the injectability test has proven the injectability of the hydrogels, if the gelification occurs either in-situ, either before of the injection. The preliminary biological characterization indicates cytocompatibility of these gels. Immobilization of line cells, performed with both L929 fibroblasts and MG62 osteoblasts, assessed the suitability of these hydrogels in supporting cell immobilization. Further studies on the biological characterization, as stem cells immobilization and direct cytocompatibility in vivo, have to be perfomed to assess the behavior of these systems. In conclusion, these hydrogels con be considered suitable for bone tissue engineering.
SOMMARIO Introduzione e Scopo Diverse strategie, come sostituti ossei, autograft, allograft, xenograft e distraction osteogenesis, sono state impiegate per sostituire il tessuto osseo o accelerarne la rigenerazione. Queste tecniche, tuttavia, presentano ancora delle limitazioni come la limitata disponibilità, le ridotte proprietà osteoinduttive, il rischio di reazioni avverse, immunogenicità e infezioni. Nel contesto della medicina rigenerativa, la chirurgia mininvasiva potrebbe sostituire quella tradizionale portando come vantaggi maggior condiscendenza da parte del paziente e un minor danneggiamento dei tessuti. Un tale approccio, tuttavia, richiede l’uso di materiali iniettabili, che hanno il vantaggio di riempire difetti di forma irregolare. Tra questi materiali, gli idrogeli iniettabili, grazie alla loro capacità di rigonfiamento e al loro contenuto acquoso simile a quello dei tessuti, hanno anche la capacità di fornire supporto temporaneo alla crescita e al mantenimento cellulare poichè facilitano il trasferimento di nutrienti, gas, scarti metabolici e molecole segnale per le cellule. Per tutti questi motivi, questo lavoro si concentra sullo studio di idrogeli iniettabili per la rigenerazione del tessuto osseo. Sono stati studiati idrogeli a base di un polimero naturale, la pectina, le cui proprietà includono effetti antiinfiammatori e capacità di creare un ambiente adatto alle cellule. Comunemente, gli idrogeli a base di pectina vengono ottenuti impiegando CaCl2, un sale solubile in acqua che promuove la formazione di gel che reticolano molto rapidamente. La rapidità di reticolazione può essere utile nella formazione di particelle, ma non produce gel omogenei. Al fine di ottenere idrogeli a base di pectina più omogenei, possono essere usati sali di calcio poco solubili così da modulare la velocità di reticolazione controllando la loro solubilità in acqua. Tra i sali poco solubili, è stato scelto di utilizzare i calcio fosfati, come idrossiapatite e beta-tricalciofosfato. I calcio fosfati rappresentano la parte minerale del tessuto osseo e vengono comunemente utilizzati, da soli o in combinazione con altri materiali, per la rigenerazione dello stesso. I diversi calcio fosfati sono stati impiegati da soli o in combinazione per studiare l’effetto della diversa solubilità sulle proprietà reologiche, il valore di pH e la vitalità cellulare. Per questa ragione sono state studiate le proprietà reologiche ed effettuati test di citocompatibilità, immobilizzazione cellulare e misurazioni di pH. Dal momento che, in un contesto di chirurgia mininvasiva, verificare l’iniettabilità di questi idrogeli è di fondamentale importanza, si è deciso di valutare questa proprietà con un texture analyser e test reologici realizzati ad hoc. L’utilizzo di idrogeli permette, in primo luogo, il caricamento di fattori di crescita e lo scambio di metaboliti e cataboliti, favorendo poi l’ncapsulamento delle cellule in una matrice extracelulare sintetica. In vista di questa possibile applicazione, i gel studiati sono stati testati per valutarne la capacità di supportare l’immobilizzazione cellulare. Materiali e Metodi Tutti gli idrogeli sono stati preparati seguendo la procedura descritta nel brevetto WO2012/007917.[24] In breve, una soluzione di pectina al 6% in peso è stata preparata sciogliendo la polvere in acqua, mannitolo 220 mM, NaOH 0.5M e 5M. La soluzione è stata lasciata in agitazione per 24 ore al fine di ottenere la completa dissoluzione della polvere e per evitare la presenza di aggregati insolubili. Per produrre gli idrogeli, l’agente reticolante è stato sospeso in acqua e sonicato per 10 minuti a 25°C e 35 KHz di potenza. La sospensione di reticolante è stata poi aggiunta alla soluzione di pectina. Il mannitolo è stato aggiunto a tutte le formulazioni poichè si è dimostrato ottimale nel ridurre gli effetti della sterilizzazione sui gel, grazie alla sua capacità di sottrazione dei radicali liberi. La pectina a basso grado di metilazione (DE:37%) è stata fornita da Herbstreith&Fox. I diversi calcio-fosfati impiegati nella preparazione dei gel sono beta-TCP (499963-10G - Sigma Aldrich) e idrossiapatite in tre diverse granulometrie: 30 nm prodotta tramite processo sol-gel dall’Università di Trento, 2.5 μm (Fludinova, Portogallo), 30 μm (Eurocoating, Italia). Le misurazioni reologiche della viscosità complessa (η*), del modulo conservativo (G’) e di quello dissipativo (G’’) a diverse frequenze di oscillazione sono state effettuate con il reometro AR-1500ex (TA instrument, USA). Al fine di valutare la stabilità delle proprietà reologiche degli idrogeli, le prove reologiche sono state condotte su alcune formulazioni conservate fino a 6 mesi. Per misurare il pH dei gel, una piccola quantita degli stessi è stata posizionata all’interno di una piastra Petri ed è stato utilizzato un pH-metro (Eutech instruments Europe BV) con un elettrodo specifico per questa applicazione. Le prove di iniettabilità sono state eseguite con un texture analyser (TA XT plus), che consiste in un afferraggio in grado di spingere il pistone della siringa contenente il gel, così da far fuoriuscire il gel ad una velocità costante. All’interno della caratterizzazione biologica, sono state condotte due differenti prove su alcune delle formulazioni preparate. Nella citocompatibilità indiretta, fibrobasti di linea L929 sono stati messi in contatto con gli estratti ottenuti dalla permanenza dei gel in acqua e la vitalità cellulare è stata poi valutata attraverso un test con MTT.La citocompatibilità è stata valutata seguendo la norma ISO 10993-5. L’immobilizzazione consiste, invece, nell’incapsulare le cellule nel gel durante la fase di reticolazione e nella conta delle cellule vive e morte dopo la dissoluzione del gel. Sono state effettuate due differenti prove di immobilizzazione, la prima per studiare la vitalità cellulare dei fibroblasti messi in contatto con vari campioni e valutare il campione più idoneo attraverso una prova con Trypan Blue; nella seconda sono state, invece, utilizzate cellule ossee di linea, osteoblasti MG62, per studiare solo la formulazione scelta dalla prova precedente (P-mH), effetuando la conta cellulare e il test MTS dopo dissoluzione dei gel. Risultati e Discussione In questo lavoro, idrogeli ottenuti da una soluzione di pectina e diversi agenti reticolanti (HA, beta-TCP), sono stati proposti come scaffold iniettabili per la rigenerazione del tessuto osseo. I risultati evidenziano che questi sistemi iniettabili hanno proprietà comparabili con quelle di altri idrogeli iniettabili a base di polimeri naturali, come gli idrogeli di alginato, chitosano e acido ialuronico. Sono stati studiati gli effetti della granulometria e della solubilità dell’agente reticolante utilizzato. Dai risultati è possibile ipotizzare che agenti reticolanti con bassa solubilità potrebbero rallentare la gelificazione; allo stesso modo la rigidità del gel aumenta all’aumentare della solubilità dell’agente reticolante. L’idrossiapatite con granulometria 2.5μm sembra non seguire questi trend infatti, il tempo di reticolazione e le proprietà reologiche risultano maggiori delle attese, esclusivamente sulla base della granulometria. Questi risultati potrebbero essere spiegati con la differente morfologia delle particelle che risultano formate da aggregati di particelle di dimensioni inferiori, Diversi agenti reticolanti sono stati combinati al fine di ottenere idrogeli con determinate caratteristiche reologiche. La stabilità a lungo termine degli idrogeli, conservati a temperatura ambiente, è stata valutata fino a 6 mesi; il pH e le proprietà reologiche sono rimasti inalterati in questo intervallo di tempo. Questo risultato apre la strada alla conservazione di prodotti a base di questi gel a temperatura ambiente. Il pH di tutti gli idrogeli, compreso tra 4.5-6.1, è risultato maggiore di quello della soluzione di pectina (4.33), risultando così prossimo al pH fisiologico, requisito indispensabile per la biocompatibilità. I risultati del test di iniettabilità (F<50N) hanno confermato la possibilità di utilizzare questi idrogeli come scaffold iniettabili. Al fine di studiare la biocompatibilità e la sopravvivenza cellulare negli idrogeli, sono state condotte prove di citocompatibilità indiretta e di immobilizzazione cellulare, utilizzando cellule provenienti da linee standardizzate. I risultati dimostrano l’assenza di effetti citotossici in vitro e la capacità di questi idrogeli di offrire un ambiente adatto alla sopravvivenza cellulare. Conclusioni I risultati indicano la possibilità di modulare le caratteristiche reologiche degli idrogeli sulla basa dell’applicazione finale controllando l’agente reticolante, la sua solubilità, struttura chimica e morfologia. Differenti tipi di idrogeli possono essere utilizzati per diverse applicazioni: idrogeli con lunghi tempi di reticolazione (10-15 minuti) possono essere impegati come sistemi di gelificazione in situ. Al contrario, idrogeli con una cinetica di reticolazione rapida, possono essere iniettati a reticolazione avvenuta se la formulazione viene calibrata per ottenere soft gel tramite il controllo della solubilità dell’agente reticolante. Un punto chiave di questo lavoro, che si inserisce nell’ambito della chirurgia mininvasiva, è stato verificare l’iniettabilità di questi idrogeli. Sia nel caso della gelificazione in situ che in quello in cui questa avvenga prima dell’iniezione, i test di iniettabilità hanno avuto esito favorevole. I test preliminari di caratterizzazione biologica, confermano la citocompatibilità di questi gel. L’immobilizzazione di cellule di linea, fibroblasti L929 e osteoblasti MG62, ha verificato la capacità di questi idrogeli di supportare l’immobilizzaizone cellulare. Per approfondire il comportamento di questi idrogeli, dovranno essere condotti ulteriori studi di caratterizzazione biologica come l’immobilizzazione di cellule staminali e la citocompatibilità diretta in vivo. In conclusione, questi idrogeli possono essere considerati adatti per applicazioni nell’ingegneria del tessuto osseo.
Pectin based biocomposites with calcium phosphates as injectable hydrogels for bone tissue engineering
ZUCCHELLI, LAURA
2012/2013
Abstract
ABSTRACT Introduction and Aims Different strategies, like bone substitutes, autograft, allograft, xenograft and distraction osteogenesis, have been employed to substitute bone or accelerate bone regeneration. Nevertheless, each of them still presents some limitations, such as poor availability, reduced osteoinductive properties, risk of reverse reactions, immunogenicity and infections. In the context of bone regenerative medicine, a minimally invasive approach could substitute an open surgery giving as advantages the compliance of the patience and lower damage of tissue. For this aim, injectable materials are required, offering in addition several advantages due to their capacity to fill irregularly shaped defects. Among them, injectable hydrogels are highly swollen three-dimensional matrices than can provide aqueous tissue-like environment. They can be considered as not conventional scaffolds, providing temporary support for cell growth as their high water content facilitates the transfer of nutrients, gases, metabolic waste and cell signaling molecules. For these reasons, this work is focused on the study of injectable hydrogels to promote bone regeneration. Gels based on a natural polymer, pectin, were studied. Pectin properties include anti-inflammatory effects and capability to maintain the cells in a proper environment. Commonly, pectin based hydrogels are obtained employing CaCl2, which is a water soluble salt that instantaneously produces hydrogels. The rapid gelification could be exploited for the formation of particles, but it is not convenient to produce homogeneous gels. Poorly soluble calcium salts can be employed to tailor the crosslinking by controlling their water dissolution. Among poorly soluble salts, calcium phosphates were selected, as hydroxyapatite and β-tricalciumphosphates. Calcium phosphates represent the mineral part of the bone. They are commonly used for bone regeneration, either alone either in combination with other materials. The calcium phosphates were used alone or in combination to study the effect of their different solubility on the rheological properties, values of pH and vitality of cells. For this purposes rheological test, cytocompatibility test, immobilization test of line cells and pH measurement were performed. Since, in a minimally invasive context, the assessment of the injectability of these hydrogels is of primary importance, it was decided to test this property by a texture analyzer and ad hoc developed rheological tests. The use of hydrogels allows, in principle, the loading of growth factors, the exchange of cell metabolites and catabolites, thus enhancing cell encapsulation in a synthetic extracellular matrix. In view of this possible application, the studied gels were proven to evaluate their suitability to support cell immobilization. Materials and Methods The procedure employed for hydrogels preparation was described in the patent WO2012/007917. [24] Briefly, a 6% (w/v) pectin solution was prepared dissolving the power in distilled water, 220 mM mannitol, 0.5 M NaOH and 5M NaOH. The solution was left under stirring for 24 hours in order to obtain the complete dissolution of the powder and thus to avoid the presence of undissolved aggregates. To produce the hydrogels, the crosslinking agent was suspended in water and sonicated for 10 minutes at 25 °C and 35 KHz of frequency. Pectin solution was then mixed with the desired amount of the suspension of the crosslinking agent. Mannitol, thanks to its free radical scavenging property, was successful in reducing the effect of sterilization on the gel and therefore was added to all formulations. Low methoxyl pectin (DE: 37%) was obtained from Herbstreith&Fox. The different calcium phosphates used to prepare the hydrogels are beta-TCP (499963-10G - Sigma Aldrich) and hydroxyapatite in three different sizes: 30 nm produced by sol-gel process by University of Trento, 2.5 μm (Fludinova, Portugal), 30 μm (Eurocoating, Italy). Rheological oscillation measurements of complex viscosity (η*), storage modulus (G’) and loss modulus (G’’) at different oscillation frequencies were performed using AR-1500ex rheometer (TA instrument, USA). In order to evaluate the stability of rheological properties, rheological tests were repeated until 6 months at three different temperatures: 25°C, 30°C and 37°C. To measure the pH of the hydrogels a small quantity of them was put in a Petri dish and a pH-meter (Eutech Instruments Europe BV, Nijkerk, Netherlands) with a double pore slim electrode was employed. The injectability tests were carried out using a texture analyzer (TA XT plus), which consists of a gripper able to push the plunger of the syringe containing the sample of gel, so as to eject the gel at a constant speed. Two biological tests were performed for some of the formulations prepared. In the indirect cytocompatibility test, L929 fibroblast have been put in contact with the extract obtained from the hydrogels in water and then the viability of cells has been investigate with MTT assay. Cytocompatibility was assessed according to ISO method 10993-5. Whereas, the immobilization test consists of immobilizing cells in the forming hydrogel and, after gel dissolution, of counting cells alive and death. Two different immobilization test were carried out, the first to investigate the viability of cells, L929 fibroblasts, in contact with all the samples and find the best one using Trypan Blue Assay, while the second employed more specific bone cells, MG62 osteoblast, to study only the chosen formulation from the previous test (P-mH) performing counting test and MTS assay after the degradation of gels. Results and Discussions In this work pectin based hydrogels, obtained from pectin solution and different calcium phosphates as crosslinkers (HA, beta-TCP), are proposed as injectable scaffold for bone regeneration. Results assess that these systems have properties comparable with those of the other natural based injectable hydrogels already in study, like alginate, chitosan and hyaluronic acid based hydrogels. The effect of the particle size and the different solubility of the crosslinkers were investigated. From the results it could be hypothesized that crosslinkers with lower solubity could cause slower gelation. Similarly, gel stiffness is increased with the solubility of the crosslinker. Hydroxyapatite with the granulometry of 2.5 µm appears not to follow the expected trends, e.g. the gelation time and the rheological properties are higher than expected solely on the basis f the granulometry. These results could be explained with the different morphology of the particles, being formed of aggregates of smaller particles. It was possible to formulate hydrogels by combining the different crosslinkers to obtain hydrogels with specific characteristics. The long-term stability of the hydrogels, stored at room temperature, was assessed up to 6 months. The pH and rheological properties were retained in this time frame. This result opens the possibility to store products based on these gels at room temperature. All the pH of the hydrogels resulted higher than the pH of pectin solution (4.33) and in the range of 4.5-6.1, which could be considered close to the physiological pH and suitable in view of the biocompatibility of the gels. The results of the injectability test (force values under 50N) assessed the possibility for the hydrogels of being used as injectable scaffold. Cytocompatibility and immobilization tests, performed with cells from standardized cell lines, were carried out to study the biocompatibility and cells survival in the hydrogels. Results demonstrated that these systems cause no cytotoxic effect in vitro and provide a suitable environment for the cells. Conclusions The results indicate that it is possible to tailor the rheological characteristics of the hydrogels in view of the final application by controlling the type of crosslinker, its solubility, chemical structure and morphology. These types of hydrogels could be used for different application; hydrogels with long (10-15 minutes) time of gelification could be used as in-situ gelification systems. Hydrogels with a rapid kinetic of gelification could be injected after the gelification occurred if the formulation is adjusted to produce soft gels by controlling the solubility of the crosslinker. A key point of this work, which aims to the minimally invasive context, was to assess the injectability of these systems. In both cases, the injectability test has proven the injectability of the hydrogels, if the gelification occurs either in-situ, either before of the injection. The preliminary biological characterization indicates cytocompatibility of these gels. Immobilization of line cells, performed with both L929 fibroblasts and MG62 osteoblasts, assessed the suitability of these hydrogels in supporting cell immobilization. Further studies on the biological characterization, as stem cells immobilization and direct cytocompatibility in vivo, have to be perfomed to assess the behavior of these systems. In conclusion, these hydrogels con be considered suitable for bone tissue engineering.File | Dimensione | Formato | |
---|---|---|---|
2013_12_Zucchelli.PDF.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
2.2 MB
Formato
Adobe PDF
|
2.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/88861