The major damage to bridges at river crossings occurs during floods. Damage is caused by various reasons, one of the main ones being riverbed scour at bridge foundations (piers and abutments). The damage can range from minor erosion to complete failure of the bridge structure or its road approach. Complete failure results in severe disruption to local traffic flows. The localized scour phenomenon and specifically scour at bridge piers has been the subject of extensive investigations by many researchers and vast literature exists on the topic. In spite of this big research effort, comprehensive design approaches are still missing due to a general inability of predictive equations to fit data from different authors. In this thesis, a relatively large amount of local scour data (516 experiments) has been collected from literature works on clear-water scour at cylindrical piers. A great deal of work has been devoted to selecting experiments that were not evidently flawed by some irregularity that could be due to any problem occurred during performance of the tests. An appropriate dimensionless framework has been introduced to steer the following analysis of literature scour values. It was recognized that different authors made different choices performing their experiments, therefore one of the most important actions undertaken here has been making all the tests homogeneous. The treatment of flow velocity was evidently a crucial factor, thus it was considered with highest attention. In this context, an analysis of threshold condition has been conducted to find a suitable criterion for defining a threshold for sediment movement and the one proposed by Melville & Coleman (2000) was finally chosen as the most suitable one among the other available criteria in literature. In this way the critical velocity for sediment motion of all the experiments was computed by a unique criterion. On the other hand, all the measured upstream flow velocities were unified by converting all the declared values by the different authors to depth-averaged velocity at the channel axis. Thanks to these strategies, all the experiments could be used as a unique, homogeneous database. The dimensionless scour depth (the ratio between the scour depth and the pier diameter) was investigated in terms of its dependence on flow intensity, sediment coarseness and nondimensional time. A formula has been proposed for prediction of the scour depth. The equation consists of an exponential factor for considering the effect of sediment coarseness and a 3rd order polynomial for the effect of flow intensity; a multiplicative constant accounts for different times. The proposed model is valid for a vast range of flow intensities (0.48 ≤ U ≤ 1.39) and sediment coarseness ratios (2 ≤ D50 ≤ 325). Finally, the predictive capability of the present formula has been shown to be better than those of existing literature approaches.
Durante gli eventi alluvionali i ponti fluviali possono essere significativamente danneggiati, o anche distrutti, dai fenomeni di erosione localizzata alla base delle strutture in alveo (pile e spalle), con evidenti conseguenze negative sul sistema viabilistico. I processi erosivi rappresentano una delle cause di maggior rilievo di vulnerabilità dei ponti. I processi erosive localizzati sono stati oggetto di una vasta ricerca negli ultimi decenni; sfortunatamente, nonostante i notevoli sforzi profusi nello studio, gli strumenti per la previsione della profondità di scavo ancora non consentono di condurre stime affidabili, stante la non capacità delle formule proposte di rappresentare correttamente i dati dei vari autori. In questa tesi sono stati considerati parecchi dati di letteratura (provenienti da 516 prove di laboratorio) relativi all’erosione alle pile circolari in condizioni di acque chiare. La prima importante parte del lavoro ha riguardato un’attenta selezione delle prove che potessero essere in qualche modo inficiate da problematiche occorse durante l’esperimento, risultando in andamenti evidentemente irregolari. Per l’analisi dei dati sperimentali è stato messo a punto un adeguato inquadramento adimensionale. Riconoscendo che i diversi autori hanno svolto i propri esperimenti a partire da scelte differenti, uno sforzo significativo è stato fatto per rendere i dati confrontabili tra loro. Un aspetto cruciale è stato identificato nella maniera di trattare la velocità del flusso. È stata fatta in primo luogo un’analisi della stima delle condizioni di incipiente movimento, a seguito della quale si è deciso di considerare il criterio proposto da Melville & Coleman (2000) applicandolo a tutti gli esperimenti. In secondo luogo, la velocità del flusso è stata sempre espressa in termini di valore relativo all’asse del canale e mediato sulla verticale, effettuando le opportune conversioni dalla velocità media sulla sezione quando necessario. In questa maniera è stato possibile omogeneizzare i dati in maniera significativa. È stata analizzata la dipendenza della profondità di scavo (adimensionalizzata sulla dimensione della pila) rispetto alla velocità del flusso, alla dimensione dei sedimenti e al tempo, arrivando a proporre una formula interpolare. L’equazione è composta da un contributo esponenziale per la dimensione dei sedimenti, da un polinomio di terzo grado per l’effetto della velocità del flusso, e da una costante moltiplicativa che tiene conto del tempo. La formula proposta, che si è dimostrata avere un’affidabilità maggiore di quelle delle formule di letteratura attualmente disponibili, è valida in un range i condizioni relativamente ampio (0.48 ≤ U ≤ 1.39; 2 ≤ D50 ≤ 325).
Prediction of clear water local scour at bridge piers
JALALI, SEYED KAMRAN
2013/2014
Abstract
The major damage to bridges at river crossings occurs during floods. Damage is caused by various reasons, one of the main ones being riverbed scour at bridge foundations (piers and abutments). The damage can range from minor erosion to complete failure of the bridge structure or its road approach. Complete failure results in severe disruption to local traffic flows. The localized scour phenomenon and specifically scour at bridge piers has been the subject of extensive investigations by many researchers and vast literature exists on the topic. In spite of this big research effort, comprehensive design approaches are still missing due to a general inability of predictive equations to fit data from different authors. In this thesis, a relatively large amount of local scour data (516 experiments) has been collected from literature works on clear-water scour at cylindrical piers. A great deal of work has been devoted to selecting experiments that were not evidently flawed by some irregularity that could be due to any problem occurred during performance of the tests. An appropriate dimensionless framework has been introduced to steer the following analysis of literature scour values. It was recognized that different authors made different choices performing their experiments, therefore one of the most important actions undertaken here has been making all the tests homogeneous. The treatment of flow velocity was evidently a crucial factor, thus it was considered with highest attention. In this context, an analysis of threshold condition has been conducted to find a suitable criterion for defining a threshold for sediment movement and the one proposed by Melville & Coleman (2000) was finally chosen as the most suitable one among the other available criteria in literature. In this way the critical velocity for sediment motion of all the experiments was computed by a unique criterion. On the other hand, all the measured upstream flow velocities were unified by converting all the declared values by the different authors to depth-averaged velocity at the channel axis. Thanks to these strategies, all the experiments could be used as a unique, homogeneous database. The dimensionless scour depth (the ratio between the scour depth and the pier diameter) was investigated in terms of its dependence on flow intensity, sediment coarseness and nondimensional time. A formula has been proposed for prediction of the scour depth. The equation consists of an exponential factor for considering the effect of sediment coarseness and a 3rd order polynomial for the effect of flow intensity; a multiplicative constant accounts for different times. The proposed model is valid for a vast range of flow intensities (0.48 ≤ U ≤ 1.39) and sediment coarseness ratios (2 ≤ D50 ≤ 325). Finally, the predictive capability of the present formula has been shown to be better than those of existing literature approaches.File | Dimensione | Formato | |
---|---|---|---|
2014_07_Jalali.pdf
accessibile in internet per tutti
Descrizione: Thesis text
Dimensione
8.16 MB
Formato
Adobe PDF
|
8.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/93412