Hearing loss is one of the most prevalent sensorineural impairments, affecting 35%-50% of the population in the age group of 65 and over, and more than 80 million people in Europe. Still, a lot of hearing impaired people do not like using hearing aids, partly due to stigma-related reasons and cost issues but also due to the technical limitations. Background noise as well as reverberation can decrease the speech quality and intelligibility. Recently developed spatial filtering techniques are able to provide a significant amount of noise and reverberation reduction. By integrating these techniques in hearing aids, it is possible to improve the speech quality and intelligibility. Monaural processing can destroy binaural cues, which contain crucial spatial information about the acoustic scene surrounding the listener. On the other hand, binaural processing allows to maintain certain binaural cues. Most research has focused on the preservation of interaural level and time differences. So far, no work has focused on the preservation of the Interaural Coherence (IC) of the reverberation, which can be modeled as a highly time-varying diffuse sound component. If the IC of diffuse sound is destroyed, the diffuse sound components can be perceived as directional, which is decidedly undesirable. Within the scope of this thesis, in the first step a tool to simulate binaural room impulse responses for hearing aids is developed. The simulation is based on the image source method by incorporating impulse responses measured in an anechoic environment by hearing aids placed on a head and torso simulator. In the next step, a spatial filtering technique to jointly reduce reverberation and background noise is developed and implemented. Finally, a recently proposed technique to preserve the IC of the residual noise (which was assumed to be stationary) is investigated and extended to preserve the IC also of the residual diffuse sound (in our case, highly non-stationary); in this way, also the IC of the residual reverberation can be preserved. A comprehensive evaluation of the performance of the different spatial filters (i.e., with and without the preservation of the IC) is conducted.
L’ipoacusia è un indebolimento del sistema uditivo. Si tratta di una delle patologie neurosensoriali più diffuse: coinvolge il 35%-50% della popolazione d’età superiore a 65 anni e più di 80 milioni di persone in Europa. Molti di questi soggetti preferiscono non usare apparecchi acustici, alcuni per motivi legati a fenomeni di stigmatizzazione o ai costi; ma molti scelgono di non servirsene a causa di limitazioni tecniche. La qualità e l’intelligibilità del parlato possono essere peggiorate dal rumore di sottofondo così come anche dal riverbero. Oggi esistono tecniche di filtraggio spaziale - che possono essere applicate agli apparecchi acustici - in grado di ridurre significativamente rumore e riverbero. Se da un lato gli algoritmi monoaurali possono far perdere le stimolazioni binaurali che contengono informazioni cruciali sulla scena acustica che circonda l’ascoltatore, dall’altro, invece, gli algoritmi binaurali consentono la preservazione di queste fondamentali stimolazioni. A questo proposito la comunità scientifica si è concentrata sulla preservazione delle differenze interaurali di intensità e tempo ma finora nessun lavoro si è occupato della preservazione della coerenza interaurale (IC) del riverbero; quest’ultimo può essere modellato come una componente sonora diffusa altamente tempo-variante. Se la IC dei suoni diffusi è distorta, le componenti diffuse possono essere percepite come direzionali: fenomeno fortemente indesiderato. Il punto di partenza consiste nella realizzazione di un simulatore di risposte all’impulso in una stanza, come fossero ricevute da apparecchi acustici. La simulazione si basa sul metodo delle sorgenti immagine e su risposte all’impulso misurate in ambiente anecoico. Successivamente si sviluppa una tecnica di filtraggio spaziale per ridurre congiuntamente riverbero e rumore. Quindi, si investiga una tecnica recente che preserva la IC del rumore residuo, assunto come stazionario, e la si estende tenendo presente che, nel caso in analisi, le componenti diffuse residue possono essere altamente non-stazionarie. Infine viene condotta una valutazione esaustiva dei diversi filtri confrontando gli effetti con e senza preservazione della IC.
Dereverberation with binaural cue preservation for hearing aids
TORCOLI, MATTEO
2013/2014
Abstract
Hearing loss is one of the most prevalent sensorineural impairments, affecting 35%-50% of the population in the age group of 65 and over, and more than 80 million people in Europe. Still, a lot of hearing impaired people do not like using hearing aids, partly due to stigma-related reasons and cost issues but also due to the technical limitations. Background noise as well as reverberation can decrease the speech quality and intelligibility. Recently developed spatial filtering techniques are able to provide a significant amount of noise and reverberation reduction. By integrating these techniques in hearing aids, it is possible to improve the speech quality and intelligibility. Monaural processing can destroy binaural cues, which contain crucial spatial information about the acoustic scene surrounding the listener. On the other hand, binaural processing allows to maintain certain binaural cues. Most research has focused on the preservation of interaural level and time differences. So far, no work has focused on the preservation of the Interaural Coherence (IC) of the reverberation, which can be modeled as a highly time-varying diffuse sound component. If the IC of diffuse sound is destroyed, the diffuse sound components can be perceived as directional, which is decidedly undesirable. Within the scope of this thesis, in the first step a tool to simulate binaural room impulse responses for hearing aids is developed. The simulation is based on the image source method by incorporating impulse responses measured in an anechoic environment by hearing aids placed on a head and torso simulator. In the next step, a spatial filtering technique to jointly reduce reverberation and background noise is developed and implemented. Finally, a recently proposed technique to preserve the IC of the residual noise (which was assumed to be stationary) is investigated and extended to preserve the IC also of the residual diffuse sound (in our case, highly non-stationary); in this way, also the IC of the residual reverberation can be preserved. A comprehensive evaluation of the performance of the different spatial filters (i.e., with and without the preservation of the IC) is conducted.File | Dimensione | Formato | |
---|---|---|---|
2014_07_Torcoli.PDF
Open Access dal 27/06/2015
Descrizione: Testo della Tesi
Dimensione
8.44 MB
Formato
Adobe PDF
|
8.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/93461