The spreading of the Solid Oxide Fuel Cell (SOFC) technology is currently hindered by issues mainly related to the high operating temperatures (800 – 1000°C). Several benefits would be achieved by decreasing the temperatures to 600 – 800°C (Intermediate Temperature SOFC, IT-SOFC). Though, at these temperatures the traditional materials (Ni/YSZ/LSM) are subject to slower kinetics and higher polarization losses. Novel, better performing and cheaper materials are thus required. The present work deals with the preparation and the characterization (with optimized procedures) of two novel cathodic materials, with layered perovskitic structure: LaBaCo2O5+δ (LBC) e YBaCo2O5+δ (YBC). These materials were characterized from a chemical and electrochemical point of view, by application of several different techniques. Namely, these techniques are: TPO (Temperature Programmed Oxidation), SEM (Scanning Electron Microscopy), XRD (X-Ray Diffraction) with Rietveld analysis, 2 and 4-electrode conductivity measurement and Electrochemical Impedance Spectroscopy (EIS) measurement, carried out over symmetrical cell with LSGM as the electrolyte. A coherent picture emerged from the experimental results, and the superiority of the LBC as a cathode material was demonstrated. The results of the EIS tests over the LBC cathode also allowed to investigate the kinetics of the oxygen reduction reaction, following an approach based on equivalent circuits. The main reaction steps were individuated, which are the oxygen diffusion and charge transfer and the O2 dissociative adsorption. Overall, the adequacy of the coprecipitation synthesis method for layered perovskitic cathode was demonstrated.
Le principali problematiche che ostacolano l’affermazione su larga scala delle celle a combustibile ad ossidi solidi (Solid Oxide Fuel Cells, SOFC) sono legate all’alta temperatura d’esercizio (800 – 1000°C). Operare a temperature inferiori causa rallentamento delle cinetiche di reazione e aumento delle perdite di polarizzazione, rendendo inadeguati i materiali tradizionalmente utilizzati (Ni/YSZ/LSM). È quindi fondamentale ricercare nuovi materiali catodici, anodici ed elettrolitici più attivi, efficienti ed economici. Questo lavoro di tesi ha lo scopo di caratterizzare, ottimizzando le relative procedure, materiali catodici capaci di operare a temperature tra 600 e 800°C (Intermediate Temperature SOFC, IT-SOFC). In particolare, sono stati studiati due materiali innovativi, con struttura perovskitica a strati: LaBaCo2O5+δ (LBC) e YBaCo2O5+δ (YBC). Questi materiali sono stati caratterizzati sia del punto di vista chimico che elettrochimico, con l’impiego di diverse tecniche, quali TPO (Temperature Programmed Oxidation), SEM (Scanning Electron Microscopy), XRD (X-Ray Diffraction) con analisi Rietveld, misure della densità per galleggiamento, misura della conducibilità elettrica (a 2 e 4 elettrodi) e misura dell’impedenza (EIS, Electrochemical Impedance Spectroscopy) condotta su celle simmetriche con elettrolita LSGM. I risultati hanno prodotto un quadro coerente e hanno dimostrato che l’LBC è il materiale più performante. Nel caso del catodo LBC, i risultati della tecnica EIS hanno consentito di indagare quantitativamente le cinetiche della reazione di riduzione dell’ossigeno, sulla base dell’approccio ai circuiti equivalenti. Gli stadi di reazione determinanti sono risultati il trasporto dello ione ossigeno nel reticolo catodico e l’assorbimento dissociativo dell’ossigeno. Complessivamente la tecnica di coprecipitazione è risultata adeguata per la preparazione dei catodi perovskitici a strati per impiego in IT-SOFC.
Caratterizzazione chimica ed elettrochimica di catodi LaBaCo2O5+d e YBaCo2O5+d per SOFC a temperatura intermedia
CARTA, ADRIANO
2013/2014
Abstract
The spreading of the Solid Oxide Fuel Cell (SOFC) technology is currently hindered by issues mainly related to the high operating temperatures (800 – 1000°C). Several benefits would be achieved by decreasing the temperatures to 600 – 800°C (Intermediate Temperature SOFC, IT-SOFC). Though, at these temperatures the traditional materials (Ni/YSZ/LSM) are subject to slower kinetics and higher polarization losses. Novel, better performing and cheaper materials are thus required. The present work deals with the preparation and the characterization (with optimized procedures) of two novel cathodic materials, with layered perovskitic structure: LaBaCo2O5+δ (LBC) e YBaCo2O5+δ (YBC). These materials were characterized from a chemical and electrochemical point of view, by application of several different techniques. Namely, these techniques are: TPO (Temperature Programmed Oxidation), SEM (Scanning Electron Microscopy), XRD (X-Ray Diffraction) with Rietveld analysis, 2 and 4-electrode conductivity measurement and Electrochemical Impedance Spectroscopy (EIS) measurement, carried out over symmetrical cell with LSGM as the electrolyte. A coherent picture emerged from the experimental results, and the superiority of the LBC as a cathode material was demonstrated. The results of the EIS tests over the LBC cathode also allowed to investigate the kinetics of the oxygen reduction reaction, following an approach based on equivalent circuits. The main reaction steps were individuated, which are the oxygen diffusion and charge transfer and the O2 dissociative adsorption. Overall, the adequacy of the coprecipitation synthesis method for layered perovskitic cathode was demonstrated.File | Dimensione | Formato | |
---|---|---|---|
2014_07_Carta.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
10.35 MB
Formato
Adobe PDF
|
10.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/93673