Conventional seismic imaging algorithms are based on single-scattering hypothesis. The reverberations that generate during wavefield propagation in the subsurface (multiple reflections) are usually considered as unwanted noise. Even though the most energetic reverberations are the so called surface-related multiples, in areas of high structural complexity strong internal multiples are usually recorded. The most common approach to handle with the presence of multiple reflections is to try to eliminate them. However, the multiply scattered events had interacted with the subsurface discontinuities, carrying useful information about it. When properly imaged, they can enhance the seismic image and provide additional illumination in areas poorly imaged by conventional approaches. In this thesis I show the mathematical derivation on which the migration of multiples is based. I show that the multiples increase the illumination and the coverage, and add useful information to the image obtained with the primaries only. The main issue in using the multiples is the cross-talk noise: the migration procedure returns the correct image plus some artifacts related to the cross-talk of primaries and multiples of different interface. In two dedicated chapters, I present two techniques able to identify and reconstruct the model of the cross-talk events. The first one acts in the pre-stack domain while the second method is based on a modified imaging condition. The last two chapters deal with the internal multiples. When properly imaged, these events can enhance the seismic image and provide additional illumination in those areas poorly imaged by conventional approaches. I propose a technique based on non-linear seismic interferometry, that allows to exploit the information coming from the internal multiples. Although multiples can be considered as a useful signal, their prediction and attenuation are still fundamental tasks. The migration of surface-related multiples can, in fact, benefit from a separation between primaries and multiples. Moreover the identification of the reflector mainly responsible for the generation of the reverberations, is very useful. In the last chapter, I propose a method for estimating both surface-related and interbed multiple artifacts, using as input the migrated section and the subsurface velocity model.
Gli algoritmi di imaging sismico convenzionali si basano sull’ipotesi di scattering singolo. Le riverberazioni che si generano durante la propagazione del campo d’onda nel sottosuolo (riflessioni multiple) sono, solitamente, considerate rumore. Le più energetiche sono, di solito, le multiple di superficie anche se, in area caratterizzate da una geologia complessa, si registrano multiple interne molto energetiche. L’approccio più comune per trattare il problema delle multiple è quello di cercare di eliminarle dai dati a monte della catena migrazione sismica. Gli eventi multipli, però, hanno interagito con le discontinuità del sottosuolo, e ne trasportano quindi l’informazione. Se vengono migrate correttamente, possono fornire informazione utile e migliorare l’illuminazione in quelle aree in cui l’imaging ottenuto con le sole primarie non è di buona qualità. In questa tesi mostro la derivazione matematica alla base della migrazione delle multiple. Mostro che queste ultime aumentano l’illuminazione e la copertura ed aggiungono informazione a quella contenuta nelle riflessioni primarie. Il problema principale è la nascita del cosiddetto cross-talk: la procedura di migrazione delle multiple ritorna l’immagine delle interfacce del sottosuolo contaminata da elementi di rumore. In due capitoli dedicati, presento due tecniche in grado di identificare ed attenuare il cross-talk. La prima tecnica opera nel dominio dell’immagine, mentre la seconda utilizza una condizione di imaging modificata. Gli ultimi due capitoli trattano il tema delle multiple interne. Quando vengono migrate correttamente, questi eventi possono migliorare l’immagine sismica e fornire illuminazione aggiuntiva. Nella mia tesi propongo una tecnica basata sull’interferometria sismica che permette di sfruttare separatamente l’informazione contenuta nelle multiple interne. Anche se le multiple possono essere utilizzate come segnale utile, la loro predizione e rimozione è ancora di fondamentale utilità. La migrazione delle multiple di superficie può, infatti, beneficiare di una separazione tra primarie e multiple. Inoltre, l’identificazione dei riflettori responsabili della generazione delle riverberazioni è di grande utilità. Nell’ultimo capitolo della tesi, propongo una metodologia per la stima sia delle multiple di superficie che interne, che utilizza come input solo l’immagine sismica migrata e il modello di velocità del sottosuolo.
Seismic processing and imaging of multiple reflections
FORTINI, CARLO
Abstract
Conventional seismic imaging algorithms are based on single-scattering hypothesis. The reverberations that generate during wavefield propagation in the subsurface (multiple reflections) are usually considered as unwanted noise. Even though the most energetic reverberations are the so called surface-related multiples, in areas of high structural complexity strong internal multiples are usually recorded. The most common approach to handle with the presence of multiple reflections is to try to eliminate them. However, the multiply scattered events had interacted with the subsurface discontinuities, carrying useful information about it. When properly imaged, they can enhance the seismic image and provide additional illumination in areas poorly imaged by conventional approaches. In this thesis I show the mathematical derivation on which the migration of multiples is based. I show that the multiples increase the illumination and the coverage, and add useful information to the image obtained with the primaries only. The main issue in using the multiples is the cross-talk noise: the migration procedure returns the correct image plus some artifacts related to the cross-talk of primaries and multiples of different interface. In two dedicated chapters, I present two techniques able to identify and reconstruct the model of the cross-talk events. The first one acts in the pre-stack domain while the second method is based on a modified imaging condition. The last two chapters deal with the internal multiples. When properly imaged, these events can enhance the seismic image and provide additional illumination in those areas poorly imaged by conventional approaches. I propose a technique based on non-linear seismic interferometry, that allows to exploit the information coming from the internal multiples. Although multiples can be considered as a useful signal, their prediction and attenuation are still fundamental tasks. The migration of surface-related multiples can, in fact, benefit from a separation between primaries and multiples. Moreover the identification of the reflector mainly responsible for the generation of the reverberations, is very useful. In the last chapter, I propose a method for estimating both surface-related and interbed multiple artifacts, using as input the migrated section and the subsurface velocity model.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Fortini.pdf
non accessibile
Descrizione: Thesis text
Dimensione
38.33 MB
Formato
Adobe PDF
|
38.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/98028