This Thesis deals with Vehicle Sharing Systems (VSSs) by focusing on vehicle fleet management, control and optimization. Most of these topics have been developed in the GreenMove (GM) context. GM is an innovative electric VSS which aims to design a new sustainable urban mobility model for the city of Milano. The services currently in place often appear as a simple rental service just for cars. However, the GM service is green, flexible, smartphone-based, free from intermediaries and provided with the most innovative fleet management algorithms. First, a detailed description of the fleet vehicles is provided (e.g. size, number of seats and autonomy) along with technical aspects (i.e. vehicle data and buses, charging modes and commands). All the vehicles have to be endowed with a Green-eBox (GEB) to be inserted into the GM fleet. The GEB is an Android based electronic on-board control unit; it implements several abstraction mechanisms that allow the seamless use of technologically different vehicles, and it provides a unique and standardized mode of access (the Vehicle Interface) for all the system actors. The GEB has been tested both on the fleet vehicles and, for four months, in a condominium- based VSS demonstrating great reliability. Then, two innovative algorithms for managing and controlling the vehicle fleet were introduced. The Feedback Dynamic Pricing (FDP) technique models the VSS as a dynamical system. This opens up new control options for the fleet balancing problem. In this approach, a control strategy can be derived using the theory of feedback-regulated systems. Thus, assuming that people are sensitive to changes in the price of the service this can be actively and real-time con- trolled by acting on the trip fee. A full-fledged simulator has been developed and experimental data are encouraging and demonstrate the feasibility of the proposed approach. The Nearest Available Vehicle (NAV) algorithm for predicting the user distance from the nearest vehicle overcomes the drawbacks of free-floating VSSs due to the absence of booking mechanisms. The idea is to use the data from vehicles past locations to make a prediction of future vehicle locations by providing users with the distance from the nearest vehicle. This technique has been successfully tested by using real car-sharing data from the Milano Car2go service.
Questa Tesi tratta le tematiche di gestione, controllo ed ottimizzazione di flotte di veicoli in servizi avanzati di Vehicle Sharing (VS). Questi argomenti sono stati prevalentemente sviluppati nell’ambito del progetto GreenMove (GM) con l’obiettivo di realizzare un nuovo sistema di mobilità sostenibile basato sul Vehicle Sharing elettrico nell’area di Milano. I servizi attualmente in essere appaiono spesso troppo generici, a volte configurandosi come una semplice offerta di un’auto a noleggio. GM, al contrario, propone un servizio flessibile, ecologico, in grado di rivolgersi a target diversi, smartphone-based e dotato di innovativi algoritmi di controllo della flotta. Innanzitutto viene presentata l’analisi dei veicoli utilizzati sia in termini di caratteristiche generali (numero di posti, autonomia, classe) sia di aspetti tecnici (bus dati, segnali e comandi disponibili). Ciascuno di questi veicoli è stato quindi dotato di un Green-eBox, un box elettronico Android-based, che, grazie a diversi livelli di astrazione, nasconde le diverse specificità dei singoli veicoli esponendo un’interfaccia standardizzata verso l’intero sistema. Questo dispositivo è stato testato sia sui veicoli della flotta sia in un contesto di VS condominiale dimostrandosi efficace ed affidabile. Successivamente vengono trattati due diversi algoritmi per la gestione ed il controllo della flotta. L’algoritmo di Feedback Dynamic Pricing considera il servizio di VS come un sistema dinamico e consente di agire sullo stato di bilanciamento del sistema sfruttando le tecniche del controllo in retroazione. Il numero di veicoli nelle stazioni è controllato attivamente e real-time variando la tariffazione a cui sono sottoposti gli utenti. Attraverso l’utilizzo di un simulatore sviluppato ad-hoc sono stati ottenuti risultati incoraggianti che dimostrano la fattibilità di questa tecnica. L’algoritmo di predizione della distanza utente-veicolo (Nearest Available Vehicle, NAV), infine, si pone come soluzione ai problemi legati all’assenza di un servizio di prenotazione nei sistemi free-floating. Attraverso l’utilizzo di un database storico delle posizioni dei veicoli, può essere effettuata una predizione della distanza a cui l’utente troverà il veicolo più vicino rispetto ad una posizione ed un orario forniti. Un prototipo di questo sistema, attraverso l’utilizzo di dati reali provenienti dal servizio Car2go di Milano, è stato sviluppato e testato con successo.
Analysis and design of advanced vehicle sharing systems: on-board technologies, control and optimization
BIANCHESSI, ANDREA GIOVANNI
Abstract
This Thesis deals with Vehicle Sharing Systems (VSSs) by focusing on vehicle fleet management, control and optimization. Most of these topics have been developed in the GreenMove (GM) context. GM is an innovative electric VSS which aims to design a new sustainable urban mobility model for the city of Milano. The services currently in place often appear as a simple rental service just for cars. However, the GM service is green, flexible, smartphone-based, free from intermediaries and provided with the most innovative fleet management algorithms. First, a detailed description of the fleet vehicles is provided (e.g. size, number of seats and autonomy) along with technical aspects (i.e. vehicle data and buses, charging modes and commands). All the vehicles have to be endowed with a Green-eBox (GEB) to be inserted into the GM fleet. The GEB is an Android based electronic on-board control unit; it implements several abstraction mechanisms that allow the seamless use of technologically different vehicles, and it provides a unique and standardized mode of access (the Vehicle Interface) for all the system actors. The GEB has been tested both on the fleet vehicles and, for four months, in a condominium- based VSS demonstrating great reliability. Then, two innovative algorithms for managing and controlling the vehicle fleet were introduced. The Feedback Dynamic Pricing (FDP) technique models the VSS as a dynamical system. This opens up new control options for the fleet balancing problem. In this approach, a control strategy can be derived using the theory of feedback-regulated systems. Thus, assuming that people are sensitive to changes in the price of the service this can be actively and real-time con- trolled by acting on the trip fee. A full-fledged simulator has been developed and experimental data are encouraging and demonstrate the feasibility of the proposed approach. The Nearest Available Vehicle (NAV) algorithm for predicting the user distance from the nearest vehicle overcomes the drawbacks of free-floating VSSs due to the absence of booking mechanisms. The idea is to use the data from vehicles past locations to make a prediction of future vehicle locations by providing users with the distance from the nearest vehicle. This technique has been successfully tested by using real car-sharing data from the Milano Car2go service.File | Dimensione | Formato | |
---|---|---|---|
Tesi.pdf
non accessibile
Descrizione: Thesis text
Dimensione
8.09 MB
Formato
Adobe PDF
|
8.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/98244