This work is concerned with the analysis of two actuators, namely semi-active suspensions and active aerodynamic surfaces, in order to enhance vehicles ride quality. First, a detailed breakdown of their dynamic properties is carried out, which makes it possible to endow well-known vehicle models with the two elements. Afterwards, various aspects of ride quality (such as comfort, road holding, braking and steering) are defined in a mathematical fashion, so that it is possible to rigorously assess the performance of the developed control strategies. From the analysis of the full-car model endowed with semi-active suspensions, a new centralised methodology that can improve comfort by means of the synergistic use of all the actuators on a vehicle is in fact drawn. The algorithm aims at emulating the presence of fictitious dampers that oppose to the chassis allowed movements: heave and pitch for a 2-wheels vehicle, heave, pitch and roll for a 4-wheels vehicle. By matching the forces that the fictitious dampers would exert on the chassis with the forces that can be provided by the real dampers, it is possible to draw the control rules for all the actuators. Several time domain and frequency domain based simulations are conducted to support the effectiveness of the method. Despite the dissimilarity of the considered actuators, it is subsequently shown how the proposed methodology can be readily employed in active aerodynamic surfaces control, providing outstanding results in terms of comfort enhancement at high speeds, with a limited energy consumption. The developed algorithm is finally complemented with other control strategies, that aim at improving other ride quality aspects, achieving a high level multi-objective controller. In the end a load estimation algorithm is developed, since the knowledge of the actual vehicle mass is shown to be vital for the development of a model-based controller for active aerodynamic surfaces. The spectrum analysis based method is able to provide a reliable estimation of a vehicle load without the need of measuring neither road profile nor the wheel vertical motion, but simply by processing the signals from an inertial measurement unit installed on the chassis.
Questo lavoro tratta dell'analisi di due attuatori, ossia le sospensioni semi attive e le superfici aerodinamiche attive, al fine di migliorare la qualità di guida dei veicoli. Per prima cosa viene affrontato uno studio dettagliato delle loro proprietà dinamiche, il che rende possibile l’integrazione dei due modelli con i modelli dei veicoli noti in letteratura. Successivamente, vari aspetti della qualità di guida (come il comfort, la tenuta stradale, la bontà di frenata e di sterzo) sono definiti in modo matematico, in modo da poter valutare rigorosamente le performance delle strategie di controllo che verranno sviluppate. Dall’analisi del modello full-car dotato di sospensioni semi attive viene dedotta una nuova strategia di controllo centralizzata, che può migliorare il comfort tramite l’utilizzo sinergico degli attuatori montati sul veicolo. L’algoritmo mira ad emulare la presenza di smorzatori fittizi che si oppongono ai movimenti che lo chassis può eseguire: movimento verticale, beccheggio e rollio. Uguagliando le forze esercitate dagli smorzatori fittizi con quelle che possono fornire gli attuatori reali è possibile trarre le leggi di controllo per ogni attuatore. Diverse simulazioni sono state condotte per provare l’efficacia del metodo, attraverso analisi nel dominio del tempo e della frequenza. Nonostante la diversità degli attuatori considerati, viene successivamente mostrato come la metodologia proposta può essere prontamente utilizzata anche per il controllo delle superfici aerodinamiche attive, fornendo risultati ottimi risultati in termini di miglioramento del comfort alle alte velocità, con un consumo di energia limitato. L’algoritmo sviluppato viene completato da altre strategie di controllo, che mirano a migliorare altri aspetti della qualità di guida, realizzando un controllore multi-obiettivo di alto livello. Per concludere è stato sviluppato un algoritmo di stima del carico, dal momento che la conoscenza della massa di veicolo è vitale per lo sviluppo di un controllore model based per le superfici aerodinamiche attive. Il metodo, basato sull’analisi spettrale, è in grado di fornire una stima del carico affidabile, senza la necessità di misurare il profilo stradale o le variabili di ruota. Si dimostra infatti come sia sufficiente processare i segnali acquisiti da un’unità inerziale installata sullo chassis.
Multi-objective methodologies for vehicles ride quality enhancing
BOTTELLI, STEFANO
Abstract
This work is concerned with the analysis of two actuators, namely semi-active suspensions and active aerodynamic surfaces, in order to enhance vehicles ride quality. First, a detailed breakdown of their dynamic properties is carried out, which makes it possible to endow well-known vehicle models with the two elements. Afterwards, various aspects of ride quality (such as comfort, road holding, braking and steering) are defined in a mathematical fashion, so that it is possible to rigorously assess the performance of the developed control strategies. From the analysis of the full-car model endowed with semi-active suspensions, a new centralised methodology that can improve comfort by means of the synergistic use of all the actuators on a vehicle is in fact drawn. The algorithm aims at emulating the presence of fictitious dampers that oppose to the chassis allowed movements: heave and pitch for a 2-wheels vehicle, heave, pitch and roll for a 4-wheels vehicle. By matching the forces that the fictitious dampers would exert on the chassis with the forces that can be provided by the real dampers, it is possible to draw the control rules for all the actuators. Several time domain and frequency domain based simulations are conducted to support the effectiveness of the method. Despite the dissimilarity of the considered actuators, it is subsequently shown how the proposed methodology can be readily employed in active aerodynamic surfaces control, providing outstanding results in terms of comfort enhancement at high speeds, with a limited energy consumption. The developed algorithm is finally complemented with other control strategies, that aim at improving other ride quality aspects, achieving a high level multi-objective controller. In the end a load estimation algorithm is developed, since the knowledge of the actual vehicle mass is shown to be vital for the development of a model-based controller for active aerodynamic surfaces. The spectrum analysis based method is able to provide a reliable estimation of a vehicle load without the need of measuring neither road profile nor the wheel vertical motion, but simply by processing the signals from an inertial measurement unit installed on the chassis.File | Dimensione | Formato | |
---|---|---|---|
2014_12_PhD_Bottelli.pdf
non accessibile
Descrizione: Thesis Bottelli XXVII december 2014
Dimensione
14.82 MB
Formato
Adobe PDF
|
14.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/98247