In the field of renewable energy, Proton Exchange Membrane Fuel Cells (PEMFC) are the devices which mostly have benefited of the unique characteristics of fluorinated materials. Many fluorinated sulphonic membranes have been developed for PEMFC and, in addition, fluorinated polymers are present in many other parts of the cell, such as the catalytic layer (CL) and the gas diffusion layer (GDL). The main function of the GDL is to promote the distribution of the gaseous reagents from the bipolar plates to the catalyst layer. However, GDL has other important functions: it allows the electric contact for conduction of electrons, it works as mechanical support for the catalytic layer and the membrane, it helps to remove the combustion heat, and it plays a key role in the water management. In fact, the overall fuel cell performances can be improved by a correct water management on the contrary performances can be dramatically limited by the accumulation of liquid water inside the cell. Therefore, a correct water management is needed to reach power densities required for commercial applications. Thus, the conductive carbonaceous materials composing the GDL are usually coupled with a hydrophobic fluorinated material, usually polytetrafluoroethylene (PTFE), in order to obtain a performing water management. Fluorinated materials are suitable for this purpose because one of their core characteristics is the very low surface tension that means low water polymeric surface interaction and therefore a very high hydrophobicity. Actually, carbon-based materials are the reference class of materials used for GDL, because they have high gas permeability, good stability in acid environment and good electric conductivity. An innovative methodology to confer a stable hydrophobicity to carbonaceous materials is the by the chemical linkage of perfluoropolyether (PFPE) chains through the chemical treatment with PFPE peroxides. PFPE peroxides are industrially available perfluorinated polymers whose structures are characterized by the alternation of fluorinated carbon-based units and oxygen units. A thermal treatment at 150-200°C can link PFPE chains to carbonaceous materials by a radical pathway . PFPE chains have the typical properties of perfluorinated polymers, like chemical stability, thermal stability and high hydrophobicity, and also some peculiar characteristic such as liquid physical form and high gas permeability. These modified carbonaceous materials are super hydrophobic and show surprisingly high conductivity compare to carbons fluorinated with F2. During this work, the reaction of functionalization of highly graphitic carbon black by perfluoropolyether peroxide was studied and the possible application of PFPE functionalized carbonaceous materials was investigated. Carbon cloth (CC) and carbon black (CB) were functionalized by decomposition of PFPE peroxide and the resulting materials were chemically and physically characterized. The PFPE functionalization of carbonaceous materials was applied to Vulcan XC72R CB and SEAL CC in order to evaluate their wetting and electrical properties for their possible application in fuel cells as materials for GDLs. The chemical treatment of CB with PFPE peroxide led to high hydrophobicity and contact angles over 150° were measured. The determination of the resistivity in function of the applied pressure allowed to characterize the electrical properties of each sample. Resistivity of treated CB samples remained very close to the values of the native CB , even if a significant increment due to the insulant properties of fluorinated materials was expected, as occurs with a PTFE coating. Similarly to CB, the carbonaceous structure of CC contains condensed aromatic cycles, suitable for the hydrolytically stable linkage of perfluorinated chains due to decomposition of PFPE peroxide. Following this approach, a polymeric PFPE layer was chemically linked to CC structure and not simply deposited like the standard hydrophobization by PTFE-coating. PFPE chains on the CC surface allowed to obtain a suitable superhydrophobic effect even if the amount of PFPE linked on a CC was significantly lower than the typical 10%wt of PTFE. PFPE functionalization led to a 1% linked PFPE with a water contact angle of 172°, while 10% PTFE allows to obtains angles lower than 150°. The single layer GDL is made of a macroporous substrate which is usually based on a carbon cloth. Two CC samples were functionalized with PFPE peroxide and XPS analysis confirmed that the functionalization with PFPE peroxide occurred mostly on the CC surface. PFPE coating resulted uniform along the surface of CC fibers and wrapped singularly each fiber of CC without filling the matrix porosity. On the contrary, the commonly used PTFE-based methodology forms a solid insulant barrier that includes many fibers, covers the empty spaces between them and decreases the porosity needed for gas diffusion. The steady state current density-potential and current density-power curves of the cell assembled with PFPE-hydrophobized GDLs were registered and compared to standard GDL treated with 10% PTFE. The presence of PFPE improved the electrical performance of the fuel cell at each operating condition of temperature and humidity. In particular, the higher the content of PFPE, the better the performance in terms of maximum power density and slope of polarization curve. The PFPE-functionalized GDL is able to reduce the ohmic resistance of the whole system, increases the mass transport and improve the ionic conductivity of the membrane at low relative humidity. PTFE on the MPL works as hydrophobizing agent, but even as a binder to keep the CB on the backing layer. A PFPE based ink with similar characteristics was developed and coupled with PFPE functionalized CC to obtain a dual layer GDL. The PFPE-functionalized dual layer GDL was tested and compared with a PTFE standard, resulting in better overall performances and especially largely improving the water removal. The high resistance of PFPE to oxidative environment was used as new solution to the problem of the electrochemical corrosion of the carbon black that supports Pt catalyst in PEMFCs. This corrosion causes severe losses of precious metal catalyst and shorter cell lifetime. A PFPE-functionalized carbon black was used as a catalyst support subjected to an accelerated electrochemical corrosion. While the performances of the standard carbonaceous material were largely decreased after the accelerated degradation, the catalyst layer made of PFPE-functionalized carbon black suffered only minor effects. The introduction of PFPE functionalized materials in PEMFCs resulted to be a great improvement of the key parameters which characterize these electrochemical devices. Indeed PFPE-functionalized GDLs allow to reach higher currents as well as power density. Furthermore the catalyst layer based on PFPE-functionalized CB minimize the electrochemical degradation effects obtaining a longer fuel cell lifetime. The introduction of PFPE-functionalized carbonaceous materials improved the overall PEMFC performances by focusing on the requirements for their upcoming widespread commercial application.
Nel campo delle energie rinnovabili, le celle celle a combustibile a membrana a scambio protonico (PEMFC) sono i dispositivi che maggiormente hanno beneficiato delle caratteristiche uniche di materiali fluorurati. Molte membrane solfoniche fluorurate sono state sviluppate per le PEMFC e, inoltre, i polimeri fluorurati sono presenti in molte altre parti della cella, come lo strato catalitico (CL) e lo strato di diffusione dei gas (GDL). La funzione principale del GDL è promuovere la distribuzione dei reagenti gassosi dalle piastre bipolari allo strato catalitico. Tuttavia, il GDL ha altre funzioni importanti: permette il contatto elettrico per la conduzione di elettroni, funziona come supporto meccanico per lo strato catalitico e la membrana, aiuta a rimuovere il calore di combustione e svolge un ruolo chiave nella gestione dell'acqua. Infatti, le prestazioni complessive di celle a combustibile possono essere migliorate mediante una corretta gestione dell'acqua; in caso contrario le prestazioni sono limitate dall'accumulo di acqua liquida all'interno della cella. Pertanto, è necessaria una corretta gestione dell'acqua per raggiungere le densità di potenza e corrente necessarie per applicazioni commerciali. Così, i materiali carboniosi conduttori che compongono il GDL sono generalmente accoppiati con un materiale idrofobico fluorurato, normalmente politetrafluoroetilene (PTFE), al fine di ottenere una gestione dell'acqua performante. I materiali fluorurati sono adatti a questo scopo perché una delle loro caratteristiche principali è una tensione superficiale molto bassa, che significa bassa interazione tra l' acqua e la superficie polimerica e quindi una elevata idrofobicità. Attualmente, imateriali a base di carbonio sono la classe di riferimento dei materiali utilizzati per GDL, perché hanno elevata permeabilità ai gas, buona stabilità in ambiente acido e una buona conduttività elettrica. Una metodologia innovativa per conferire idrofobicità stabile ai materiali carboniosi è il legame chimico di catene di perfluoropolietere (PFPE) attraverso il trattamento chimico con PFPE perossidi. I PFPE perossidi sono polimeri perfluorurati disponibili industrialmente la cui struttura è caratterizzata dall'alternanza di unità fluorurate a base di carbonio e unità di ossigeno. Tramite un trattamento termico a 150-200 ° C si possono legare catene di PFPE ai materiali carboniosi per via radicalica. Le catene di PFPE hanno le proprietà tipiche dei polimeri perfluorurati, come stabilità chimica, stabilità termica ed elevata idrofobicità, e anche alcune caratteristiche peculiari come forma fisica liquida ed elevata permeabilità ai gas. Questi materiali carboniosi modificati sono super idrofobici e mostrano una conducibilità sorprendentemente elevata rispetto a carboni fluorurati con F2. Durante questo lavoro, la reazione di funzionalizzazione di carboni altamente grafitici tramite perossido perfluoropolietereo è stato studiata e l'eventuale applicazione di materiali carboniosi funzionalizzati con PFPE è stata studiata. Tessuto di carbone (CC) e carbon black (CB) sono stati funzionalizzati tramite decomposizione di perossido PFPE e i materiali risultanti sono stati caratterizzati chimicamente e fisicamente. La funzionalizzazione con PFPE di materiali carboniosi è stato applicato al Vulcan XC72R (CB) e al SEAL (CC) al fine di valutarne l'idrofobicità e le proprietà elettriche per la loro possibile applicazione in celle a combustibile come materiali per GDL. Il trattamento chimico di CB con perossido PFPE ha portato ad alta idrofobicità e sono stati misurati angoli di contatto oltre 150 °. La determinazione della resistività in funzione della pressione applicata ha permesso di caratterizzare le proprietà elettriche di ciascun campione. La resistività dei campioni di CB trattati è rimasta molto simile ai valori del CB non trattato, nonostante fosse previsto un incremento significativo a causa delle proprietà isolanti dei materiali fluorurati, come avviene con un rivestimento in PTFE. Analogamente al CB, la struttura carboniosa del CC contiene cicli aromatici condensati, adatti per il legame idroliticamente stabile di catene perfluorurate tramite la decomposizione di perossido PFPE. Seguendo questo approccio, uno strato polimerico PFPE è stato legato chimicamente alla struttura del CC e non semplicemente deposto come accade con l'idrofobizzazione standard con in PTFE. Le catene di PFPE sulla superficie del CC hanno permesso di ottenere un effetto superidrofobico anche se la quantità di PFPE legato sul CC era significativamente inferiore al 10% in peso comunemente usato nel caso del PTFE. La funzionalizzazione con PFPE ha portato ad un 1% di PFPE legato con un angolo di contatto con acqua di 172 °, mentre il 10% PTFE permette di ottiene angoli inferiori a 150 °. Un GDL a strato singolo è formato da un substrato macroporoso di solito basato su un tessuto di carbonio. Due campioni CC sono stati funzionalizzati con perossido PFPE e analisi tramite XPS hanno confermato che la funzionalizzazione con perossido PFPE è avvenuta prevalentemente sulla superficie. Il rivestimento di PFPE è risultato uniforme lungo la superficie delle fibre di CC e ha avvolto singolarmente ciascuna fibra di CC senza riempire la porosità della matrice. Al contrario, il metodo a base di PTFE comunemente usato forma una barriera isolante solida che comprende molte fibre, coprendo gli spazi vuoti tra loro e diminuendo la porosità necessaria per diffusione gassosa. Le curve di polarizzazione e le curve di densità di potenza di una cella contenente un GDL idrofobizzati con PFPE sono stati registrati e confrontati con un GDL standard trattato con il 10% di PTFE. La presenza di PFPE ha migliorato le prestazioni elettriche della cella a combustibile in ogni condizione operativa di temperatura e umidità. In particolare, maggiore è il contenuto di PFPE, migliori sono le prestazioni in termini di massima densità di potenza e la pendenza della curva di polarizzazione. Il GDL funzionalizzato PFPE è in grado di ridurre la resistenza ohmica dell'intero sistema, aumenta il trasporto di massa e migliora la conducibilità ionica della membrana a bassa umidità relativa. Il PTFE sullo strato microporoso di un GDL a doppio strato funziona come agente idrofobizzante, ma anche come legante per mantenere la CB sullo strato di supporto. Un inchiostro a base di PFPE con caratteristiche simili è stato sviluppato ed accoppiato con CC funzionalizzato con PFPE per ottenere un GDL a doppio strato. Il GDL a doppio strato funzionalizzato con PFPE è stato testato e confrontato con uno standard PTFE, con migliori prestazioni complessive e soprattutto un sostanziale miglioramento della rimozione dell'acqua. L'elevata resistenza del PFPE all'ambiente ossidativo è stato utilizzato come nuova soluzione al problema della corrosione elettrochimica del CB che supporta il catalizzatore a base di Pt nelle PEMFC. Questa corrosione provoca gravi perdite di catalizzatore metallico e riduce la durata delle celle. Un CB funzionalizzato PFPE è stata usato come supporto di catalizzatore sottoposto ad una corrosione elettrochimica accelerata. Mentre le prestazioni del materiale carbonioso originario sono ampiamente diminuite dopo la degradazione accelerata, lo strato catalitico contente CB funzionalizzato con PFPE ha subito solo effetti minori. L'introduzione di materiali funzionalizzati PFPE nelle PEMFC ha avuto come risultato un grande miglioramento dei parametri fondamentali che caratterizzano questi dispositivi elettrochimici. Infatti i GDL funzionalizzati con PFPE consentono di raggiungere elevate correnti così come densità di potenza. Inoltre lo strato catalitico a base di CB funzionalizzato PFPE ha minimizzato gli effetti di degradazione elettrochimici ottenendo un maggior tempo di vita della cella a combustibile. L'introduzione di materiali carboniosi funzionalizzati PFPE ha migliorato le prestazioni complessive delle PEMFC specialmente nei requisiti principali per le loro future applicazioni commerciali.
Reactivity of perfluoropolyether peroxides on carbon based materials and their application in proton exchange membrane fuel cells
GOLA, MASSIMO
Abstract
In the field of renewable energy, Proton Exchange Membrane Fuel Cells (PEMFC) are the devices which mostly have benefited of the unique characteristics of fluorinated materials. Many fluorinated sulphonic membranes have been developed for PEMFC and, in addition, fluorinated polymers are present in many other parts of the cell, such as the catalytic layer (CL) and the gas diffusion layer (GDL). The main function of the GDL is to promote the distribution of the gaseous reagents from the bipolar plates to the catalyst layer. However, GDL has other important functions: it allows the electric contact for conduction of electrons, it works as mechanical support for the catalytic layer and the membrane, it helps to remove the combustion heat, and it plays a key role in the water management. In fact, the overall fuel cell performances can be improved by a correct water management on the contrary performances can be dramatically limited by the accumulation of liquid water inside the cell. Therefore, a correct water management is needed to reach power densities required for commercial applications. Thus, the conductive carbonaceous materials composing the GDL are usually coupled with a hydrophobic fluorinated material, usually polytetrafluoroethylene (PTFE), in order to obtain a performing water management. Fluorinated materials are suitable for this purpose because one of their core characteristics is the very low surface tension that means low water polymeric surface interaction and therefore a very high hydrophobicity. Actually, carbon-based materials are the reference class of materials used for GDL, because they have high gas permeability, good stability in acid environment and good electric conductivity. An innovative methodology to confer a stable hydrophobicity to carbonaceous materials is the by the chemical linkage of perfluoropolyether (PFPE) chains through the chemical treatment with PFPE peroxides. PFPE peroxides are industrially available perfluorinated polymers whose structures are characterized by the alternation of fluorinated carbon-based units and oxygen units. A thermal treatment at 150-200°C can link PFPE chains to carbonaceous materials by a radical pathway . PFPE chains have the typical properties of perfluorinated polymers, like chemical stability, thermal stability and high hydrophobicity, and also some peculiar characteristic such as liquid physical form and high gas permeability. These modified carbonaceous materials are super hydrophobic and show surprisingly high conductivity compare to carbons fluorinated with F2. During this work, the reaction of functionalization of highly graphitic carbon black by perfluoropolyether peroxide was studied and the possible application of PFPE functionalized carbonaceous materials was investigated. Carbon cloth (CC) and carbon black (CB) were functionalized by decomposition of PFPE peroxide and the resulting materials were chemically and physically characterized. The PFPE functionalization of carbonaceous materials was applied to Vulcan XC72R CB and SEAL CC in order to evaluate their wetting and electrical properties for their possible application in fuel cells as materials for GDLs. The chemical treatment of CB with PFPE peroxide led to high hydrophobicity and contact angles over 150° were measured. The determination of the resistivity in function of the applied pressure allowed to characterize the electrical properties of each sample. Resistivity of treated CB samples remained very close to the values of the native CB , even if a significant increment due to the insulant properties of fluorinated materials was expected, as occurs with a PTFE coating. Similarly to CB, the carbonaceous structure of CC contains condensed aromatic cycles, suitable for the hydrolytically stable linkage of perfluorinated chains due to decomposition of PFPE peroxide. Following this approach, a polymeric PFPE layer was chemically linked to CC structure and not simply deposited like the standard hydrophobization by PTFE-coating. PFPE chains on the CC surface allowed to obtain a suitable superhydrophobic effect even if the amount of PFPE linked on a CC was significantly lower than the typical 10%wt of PTFE. PFPE functionalization led to a 1% linked PFPE with a water contact angle of 172°, while 10% PTFE allows to obtains angles lower than 150°. The single layer GDL is made of a macroporous substrate which is usually based on a carbon cloth. Two CC samples were functionalized with PFPE peroxide and XPS analysis confirmed that the functionalization with PFPE peroxide occurred mostly on the CC surface. PFPE coating resulted uniform along the surface of CC fibers and wrapped singularly each fiber of CC without filling the matrix porosity. On the contrary, the commonly used PTFE-based methodology forms a solid insulant barrier that includes many fibers, covers the empty spaces between them and decreases the porosity needed for gas diffusion. The steady state current density-potential and current density-power curves of the cell assembled with PFPE-hydrophobized GDLs were registered and compared to standard GDL treated with 10% PTFE. The presence of PFPE improved the electrical performance of the fuel cell at each operating condition of temperature and humidity. In particular, the higher the content of PFPE, the better the performance in terms of maximum power density and slope of polarization curve. The PFPE-functionalized GDL is able to reduce the ohmic resistance of the whole system, increases the mass transport and improve the ionic conductivity of the membrane at low relative humidity. PTFE on the MPL works as hydrophobizing agent, but even as a binder to keep the CB on the backing layer. A PFPE based ink with similar characteristics was developed and coupled with PFPE functionalized CC to obtain a dual layer GDL. The PFPE-functionalized dual layer GDL was tested and compared with a PTFE standard, resulting in better overall performances and especially largely improving the water removal. The high resistance of PFPE to oxidative environment was used as new solution to the problem of the electrochemical corrosion of the carbon black that supports Pt catalyst in PEMFCs. This corrosion causes severe losses of precious metal catalyst and shorter cell lifetime. A PFPE-functionalized carbon black was used as a catalyst support subjected to an accelerated electrochemical corrosion. While the performances of the standard carbonaceous material were largely decreased after the accelerated degradation, the catalyst layer made of PFPE-functionalized carbon black suffered only minor effects. The introduction of PFPE functionalized materials in PEMFCs resulted to be a great improvement of the key parameters which characterize these electrochemical devices. Indeed PFPE-functionalized GDLs allow to reach higher currents as well as power density. Furthermore the catalyst layer based on PFPE-functionalized CB minimize the electrochemical degradation effects obtaining a longer fuel cell lifetime. The introduction of PFPE-functionalized carbonaceous materials improved the overall PEMFC performances by focusing on the requirements for their upcoming widespread commercial application.File | Dimensione | Formato | |
---|---|---|---|
Tesi PhD Massimo Gola_final.pdf
non accessibile
Descrizione: Tesi
Dimensione
3.44 MB
Formato
Adobe PDF
|
3.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/98501