In the expanding research field of bioelectronics, optical stimulation of living cells and tissues has recently started to emerge as a promising tool, complementary to electrical stimulation, both for in vitro and in vivo studies. The most direct application falls within the field of retinal prostheses, consisting in restoration of impaired light sensitivity in blind retinas. In this scenario, organic materials appear optimal candidates for active photosensitive layers and/or conducting electrodes and/or substrates, thanks to their excellent biocompatibility, mechanical properties and optoelectronic capabilities. It was recently reported that polythiophene-based blends are able to elicit action potential in primary neuronal networks, and also to partially restore light sensitivity in explanted retinas bearing photoreceptors degeneration. These promising results encouraged the realization and functional evaluation of an all-organic, photovoltaic retinal prosthesis. Respect to the current, state of the art retinal prostheses based on inorganic materials, a photovoltaic prosthesis realized with an organic semiconductor avoids use of external components (like intraocular receivers and amplifiers) and does not need any wiring, can offer enhanced spatial resolution, better biocompatibility and higher conformability to the remaining retinal tissue. Moreover, organic conductors and semiconductors are unique materials in combining ionic and electronic conduction, thus mimicking the mechanisms adopted by nature for signal transmission. Besides the above mentioned benefits, the contact of an organic semiconductor with tissues and physiological solutions rises important issues of biocompatibility and temporal stability. In the first part of this thesis, the hybrid interface of an organic semiconductor with a physiological-like environment has been widely characterized by making recourse to a plethora of optical and electronic techniques, and by adopting the preferential architecture of a photoelectrochemical cell (PEC). Interestingly, transient photocurrent measurements have permitted to identify the main processes occurring at the interface of polythiophene derivative with aqueous solution under irradiation. The PEC cell has been studied also in case of oxidation of the film with the polythiophene derivative, by treatment with oxygen plasma: this case resembles the one of sterilization, and suggests that, if performed with optimized parameters, oxidation doesn’t affect the PEC cell efficiency in photocurrent generation. All organic, photovoltaic retinal prosthesis has been then optimized and widely characterized. Preferred device architecture includes a fully biocompatible and flexible substrate, namely a silk fibroin film, a biocompatible and flexible conducting layer, namely a poly(3,4-ethylenedioxythiophene) and poly(styrenesulphonate) (PEDOT:PSS) film, and an active, conjugated polymer layer, namely a regioregular poly(3-hexylthiophene) (rr-P3HT) film. The prosthesis has been analyzed after 28 days of immersion in saline solution, irradiation with ambient light at 37 °C, by means of absorption spectroscopy, contact angle and transient photocurrent measurements. The prosthesis stability in physiological conditions has been therefore successfully assessed. Realized prostheses have been implanted in dystrophic Royal College of Surgeons (RCS) rats’ eyes, and biocompatibility and functionality studies have been carried out. Optical coherence tomography, confocal scanning laser ophthalmoscopy, histochemistry and immunohistochemistry, electrophysiology, pupillary reflex measurement, and visually driven behavior test have been performed. It has been observed that organic prosthesis can sustain the surgical procedure for subretinal implantation and follows the natural curvature of the rat retina. Biocompatibility properties have been assessed as well. Preliminary results indicate that, up to two months post implantation, light sensitivity of dystrophic retinas is restored by the photovoltaic prosthesis; moreover, they show that its implantation doesn’t compromise the functionality of remaining inner retinal layers. Based on these promising results, the feasibility of implantation of an all-organic retinal prosthesis in a human eye has been investigated. To this aim, a different animal model, the pig, has been selected for its eye similarity to that of human beings, and proper device architecture has been implemented. Many possible candidates for the substrate material have been evaluated, including bacterial cellulose (BC), poly(ethyleneterephthalate) (PET), poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), poly(methylmethacrylate) (PMMA). In each case, many different constraints have been considered, including solvent resistance, wettability, processability, thermal stability, mechanical properties. A combinatorial approach permitted to define the most suitable protocols for the realization of a proper thin film substrate and the subsequent fabrication of the overall device. BC and PET has revealed to be the most suitable substrates for the realization of a scalable retinal prosthesis. Overall, this work provides a detailed characterization of organic based retinal prosthesis implanted in blind rats, and represents a useful starting point for subsequent engineering of artificial devices targeted to human beings.
Nel crescente campo di ricerca della bioelettronica, la stimolazione ottica di celle e tessuti viventi ha recentemente iniziato a emergere come un mezzo promettente, complementare alla stimolazione elettrica, per studi in vitro e in vivo. La più diretta applicazione è nel campo delle protesi retiniche, e consiste nel ripristino della sensibilità alla luce nelle retine dei ciechi. In questo scenario, i materiali organici si presentano come ottimi candidati per gli strati attivi fotosensibili, e/o gli elettrodi conduttivi, e/o i substrati, grazie alla loro eccellente biocompatibilità, alle loro proprietà meccaniche e optoelettroniche. E' stato recentemente riportato che le miscele a base di politiofene possono suscitare un potenziale di azione in reti di neuroni primari, e addirittura ripristinare la sensibilità alla luce in retine espiantate recanti degenerazione dei fotorecettori. Questi promettenti risultati hanno incoraggiato la realizzazione e la valutazione funzionale di una protesi retinica fotovoltaica completamente organica. Rispetto alle attuali protesi retiniche basate su materiali inorganici, una protesi fotovoltaica realizzata con un semiconduttore organico evita l' uso di componenti esterni (come i ricevitori e gli amplificatori intraoculari) e non necessita di alcun filo, può offrire alta risoluzione spaziale, una maggiore biocompatibilità e una più alta conformabilità al rimanente tessuto retinico. Inoltre, i conduttori e i semiconduttori organici sono materiali unici nel combinare conduzione ionica ed elettronica, cosicchè mimano il meccanismo adottato dalla natura per la trasmissione del segnale. Oltre a questi vantaggi, il contatto di un semiconduttore organico con tessuti e soluzioni fisiologiche solleva importanti questioni di biocompatibilità e stabilità temporale. Nella prima parte di questa tesi, l' interfaccia ibrida di un semiconduttore organico con soluzioni comparabili alla fisiologica è stata ampiamente caratterizzata facendo ricorso a una serie di tecniche ottiche ed elettroniche, e adottando l' architettura preferenziale di una cella fotoelettrochimica. Le misurazioni della fotocorrente transiente hanno permesso di identificare i principali processi che avvengono all' interfaccia del derivato del politiofene con la soluzione acquosa sotto irradiazione. La cella fotoelettochimica è stata studiata anche nel caso dell' ossidazione del film per trattamento con plasma di ossigeno: questo caso evoca quello della sterilizzazione, e suggerisce che, se condotta con parametri ottimizzati, l' ossidazione non inficia l' efficienza della cella fotoelettrochimica nella generazione di fotocorrente. La protesi retinica fotovoltaica completamente organica è stata poi ottimizzata e caratterizzata ampiamente. L' architettura preferita per il dispositivo include un substrato completamente biocompatibile e flessibile, ovvero un film di fibroina della seta, uno strato conduttivo biocompatibile e flessibile, ovvero un film di poli(3,4-etilendiossitiofene) drogato con polistirensulfonato (PEDOT:PSS) e uno strato attivo di polimero coniugato, ovvero poli(3-esiltiofene) regioregolare. La protesi è stata quindi analizzata dopo 28 giorni di immersione in soluzione saline, irradiazione con luce ambiente a 37 °C, grazie a spettroscopia di assorbimento, e misure di angolo di contatto e fotocorrente transiente. La stabilità della protesi in condizioni fisiologiche è stata quindi successivamente accertata. Le protesi così realizzate sono state impiantate negli occhi dei ratti del "Royal College of Surgeons" (RCS), e sono stati condotti studi di biocompatibilità e funzionalità: tomografia di coerenza ottica, oftalmoscopia per scansione confocale con laser, istochimica e immunoistochimica, elettrofisiologia, misure di riflesso pupillare e prove di comportamento guidato dalla vista. E' stato osservato che una protesi organica può sostenere una procedura chirurgica per un impianto subretinico, e segue la normale curvatura della retina. Le proprietà di biocompatibilità sono state anch'esse accertate. I risultati preliminari indicano che, fino a due mesi dopo l' impianto, la sensibilità alla luce delle retine distrofiche è ripristinata dalla protesi fotovoltaica; essi mostrano inoltre che l' impianto della protesi non compromette la funzionalità dei rimanenti strati retinici interni. Basandosi su questi risultati promettenti, la fattibilità dell' impianto di una protesi retinica completamente organica nell' occhio è stata investigata. A tale scopo, un differente modello animale, il maiale, è stato scelto per la somiglianza del suo occhio con quello umano, e un' architettura appropriata per il dispositivo è stata implementata. Sono stati valutati vari possibili candidati per il materiale del substrato, fra cui la cellulosa batterica (CB), il polietilentereftalato (PET), il poli(acido lattico-co-glicolico) (PALG), il policaprolattone (PCL), il polimetilmetacrilato (PMMA). In ogni caso, molte possibili restrizioni sono state considerate; fra queste, la resistenza a solventi, la bagnabilità, la processabilità, la stabilità termica, le proprietà meccaniche. Un approccio combinatoriale ha permesso di definire i più appropriati protocolli per la realizzazione di un film sottile di substrato adatto, e la successiva fabbricazione del dispositivo finale. CB e PET si sono rivelati i substrati più appropriati per la realizzazione di una protesi retinica scalabile. Complessivamente, questo lavoro fornisce una caratterizzazione dettagliata della protesi retinica a base organica impiantata in ratti ciechi, e rappresenta un utile punto di inizio per la successiva ingegnerizzazione di dispositivi artificiali per gli esseri umani.
Fabrication and characterization of polymer -based artificial retinal prosthesis
LAUDATO, LUCIA
Abstract
In the expanding research field of bioelectronics, optical stimulation of living cells and tissues has recently started to emerge as a promising tool, complementary to electrical stimulation, both for in vitro and in vivo studies. The most direct application falls within the field of retinal prostheses, consisting in restoration of impaired light sensitivity in blind retinas. In this scenario, organic materials appear optimal candidates for active photosensitive layers and/or conducting electrodes and/or substrates, thanks to their excellent biocompatibility, mechanical properties and optoelectronic capabilities. It was recently reported that polythiophene-based blends are able to elicit action potential in primary neuronal networks, and also to partially restore light sensitivity in explanted retinas bearing photoreceptors degeneration. These promising results encouraged the realization and functional evaluation of an all-organic, photovoltaic retinal prosthesis. Respect to the current, state of the art retinal prostheses based on inorganic materials, a photovoltaic prosthesis realized with an organic semiconductor avoids use of external components (like intraocular receivers and amplifiers) and does not need any wiring, can offer enhanced spatial resolution, better biocompatibility and higher conformability to the remaining retinal tissue. Moreover, organic conductors and semiconductors are unique materials in combining ionic and electronic conduction, thus mimicking the mechanisms adopted by nature for signal transmission. Besides the above mentioned benefits, the contact of an organic semiconductor with tissues and physiological solutions rises important issues of biocompatibility and temporal stability. In the first part of this thesis, the hybrid interface of an organic semiconductor with a physiological-like environment has been widely characterized by making recourse to a plethora of optical and electronic techniques, and by adopting the preferential architecture of a photoelectrochemical cell (PEC). Interestingly, transient photocurrent measurements have permitted to identify the main processes occurring at the interface of polythiophene derivative with aqueous solution under irradiation. The PEC cell has been studied also in case of oxidation of the film with the polythiophene derivative, by treatment with oxygen plasma: this case resembles the one of sterilization, and suggests that, if performed with optimized parameters, oxidation doesn’t affect the PEC cell efficiency in photocurrent generation. All organic, photovoltaic retinal prosthesis has been then optimized and widely characterized. Preferred device architecture includes a fully biocompatible and flexible substrate, namely a silk fibroin film, a biocompatible and flexible conducting layer, namely a poly(3,4-ethylenedioxythiophene) and poly(styrenesulphonate) (PEDOT:PSS) film, and an active, conjugated polymer layer, namely a regioregular poly(3-hexylthiophene) (rr-P3HT) film. The prosthesis has been analyzed after 28 days of immersion in saline solution, irradiation with ambient light at 37 °C, by means of absorption spectroscopy, contact angle and transient photocurrent measurements. The prosthesis stability in physiological conditions has been therefore successfully assessed. Realized prostheses have been implanted in dystrophic Royal College of Surgeons (RCS) rats’ eyes, and biocompatibility and functionality studies have been carried out. Optical coherence tomography, confocal scanning laser ophthalmoscopy, histochemistry and immunohistochemistry, electrophysiology, pupillary reflex measurement, and visually driven behavior test have been performed. It has been observed that organic prosthesis can sustain the surgical procedure for subretinal implantation and follows the natural curvature of the rat retina. Biocompatibility properties have been assessed as well. Preliminary results indicate that, up to two months post implantation, light sensitivity of dystrophic retinas is restored by the photovoltaic prosthesis; moreover, they show that its implantation doesn’t compromise the functionality of remaining inner retinal layers. Based on these promising results, the feasibility of implantation of an all-organic retinal prosthesis in a human eye has been investigated. To this aim, a different animal model, the pig, has been selected for its eye similarity to that of human beings, and proper device architecture has been implemented. Many possible candidates for the substrate material have been evaluated, including bacterial cellulose (BC), poly(ethyleneterephthalate) (PET), poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), poly(methylmethacrylate) (PMMA). In each case, many different constraints have been considered, including solvent resistance, wettability, processability, thermal stability, mechanical properties. A combinatorial approach permitted to define the most suitable protocols for the realization of a proper thin film substrate and the subsequent fabrication of the overall device. BC and PET has revealed to be the most suitable substrates for the realization of a scalable retinal prosthesis. Overall, this work provides a detailed characterization of organic based retinal prosthesis implanted in blind rats, and represents a useful starting point for subsequent engineering of artificial devices targeted to human beings.File | Dimensione | Formato | |
---|---|---|---|
2014_12_PhD_Laudato.pdf
non accessibile
Descrizione: Testo della tesi
Dimensione
5.76 MB
Formato
Adobe PDF
|
5.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/98522