This thesis addressed different aspects concerning the decellularization of biological tissues. An arterial decellularized scaffold was developed, optimizing the decellularization protocol and characterizing it biologically and mechanically. The results was a scaffold without cellular or nuclear remnants and mechanical properties comparable to native vessels. These scaffolds were implanted in-vivo in a swine model with or without endothelial cells seeded in the lumen. Two results are relevant regarding the current state of the art in the field, it was preliminary assessed in large animals that seeded endothelial cells were lost after implantation and substituted by host cells and it was demonstrated that seeded scaffolds perform better on mid-term without antiplatelet therapy. Macrophage interaction with decellularized vessels investigation showed that decellularized scaffolds elicit a lower inflammatory response compared to electrospun silk fibroin. Overall, the in-vitro and in-vivo results represent a step toward reaching a small caliber arterial substitute by understanding the mechanisms underlying the endothelialization of the graft. Beside this, it was developed a device for the automatic decellularization of blood vessel that represents a tool to bring decellularization protocols in a safe and reliable settings, both features required towards the clinical application of a process. The technology developed for the device were also used to realize a device for the decellularization and recellularization of whole rat kidneys for an hybrid application in which pancreatic cells uses the decellularized kidney as a substrate, the outcomes were positive in term of decellularization and recellularization, showing that single beta cells can reach more evenly the whole organ. This outcomes pave the way for a future in-vivo testing of the hybrid organ.
La tesi si colloca nell'ambito della decellularizzazione di tessuti biologici. Uno scaffold arterioso è stato sviluppato, ottimizzando il protocollo e caratterizzandolo da un punto di vista biologico e meccanico. Il risultato è stato uno scaffold senza residui cellulari o nucleari e proprietà meccaniche simili al tessuto nativo. Gli scaffold sono stati impiantati in-vivo in un modello suino con o senza cellule endoteliali seminate nel lume. Due risultati sono rilevanti per quanto riguarda lo stato dell'arte attuale, è stato preliminarmente dimostrato che in un modello di animale di grossa taglia le cellule endoteliali seminate vanno perse dopo l'impianto e sostituite da cellule dell'ospite, inoltre è stato dimostrato che sul medio periodo gli scaffold seminati danno migliori risultati senza terapia anticoagulante. L'analisi dell'interazione dei macrofagi con i vasi decellularizzati ha mostrato che gli scaffold decellularizati evocano una minor risposta infiammatoria comparati con scaffold in seta elettrospinnata. Nel complesso, i risultati in-vitro e in-vivo rappresentano un passo avanti nel raggiungimento di sostituti arteriosi di piccolo diametro comprendendone i meccanismi relativi all'endotelializzazione dell'impianto. In parallelo è stato sviluppato un dispositivo per la decellularizzazione automatica di vasi sanguigni che risulta essere uno strumento per portare i processi di decellularizzazione in un ambito sicuro ed affidabile come richiesto dalle regolamentazioni per raggiungere l'applicazione clinica. Le tecnologie sviluppate per il dispositivo sono state anche utilizzate per realizzare un sistema per la decellularizzazione e ricellularizzazione di reni interi di ratto per un'applicazione ibrida in cui cellule pancreatiche utilizzano come substrato il rene. I risultati sono stati positivi in termini di decellularizzazione e ricellularizzazione, mostrando come le singole beta cellule raggiungano più uniformemente l'intero organo. Questi risultati aprono la strada ad un futuro impiego in-vivo dell'organo ibrido.
Automatic decellularization and decellularized scaffolds for blood vessels tissue engineering
PELLEGATA, ALESSANDRO FILIPPO
Abstract
This thesis addressed different aspects concerning the decellularization of biological tissues. An arterial decellularized scaffold was developed, optimizing the decellularization protocol and characterizing it biologically and mechanically. The results was a scaffold without cellular or nuclear remnants and mechanical properties comparable to native vessels. These scaffolds were implanted in-vivo in a swine model with or without endothelial cells seeded in the lumen. Two results are relevant regarding the current state of the art in the field, it was preliminary assessed in large animals that seeded endothelial cells were lost after implantation and substituted by host cells and it was demonstrated that seeded scaffolds perform better on mid-term without antiplatelet therapy. Macrophage interaction with decellularized vessels investigation showed that decellularized scaffolds elicit a lower inflammatory response compared to electrospun silk fibroin. Overall, the in-vitro and in-vivo results represent a step toward reaching a small caliber arterial substitute by understanding the mechanisms underlying the endothelialization of the graft. Beside this, it was developed a device for the automatic decellularization of blood vessel that represents a tool to bring decellularization protocols in a safe and reliable settings, both features required towards the clinical application of a process. The technology developed for the device were also used to realize a device for the decellularization and recellularization of whole rat kidneys for an hybrid application in which pancreatic cells uses the decellularized kidney as a substrate, the outcomes were positive in term of decellularization and recellularization, showing that single beta cells can reach more evenly the whole organ. This outcomes pave the way for a future in-vivo testing of the hybrid organ.File | Dimensione | Formato | |
---|---|---|---|
2014_12_PhD_Pellegata.pdf
non accessibile
Descrizione: tesi completa
Dimensione
4.82 MB
Formato
Adobe PDF
|
4.82 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/98545