Multicomponent reactions (MCRs) represent a green approach towards the synthesis of poly-functional molecules, as they allow to minimize process waste and work up, by promoting one-pot more bond forming mechanisms. Likewise, the development of radical-mediated C-C bond forming transformations is interesting, thanks to the good selectivity usually observed, the mild conditions requested, and the high tolerance for these reactions shown by common functional groups. The combination of this two synthetic tools opens the way for the cheap and simple synthesis of poly-functional molecules and for the grafting of polymers and materials. The main goal of this work consisted into the optimization and application of a multicomponent protocol for the nucleophilic free radical addition to imines generated in situ, using the new TiCl4-Zn/tert-BuOOH catalytic system. The research activity followed two consecutive steps. At first, I optimized and extended the application of the multicomponent free-radical approach to alcohols and ethers as nucleophilic sources. The new explored conditions enabled me to obtain a wide range of desired final products, with high conversion and selectivity, inhibiting the competitive domino side-reactions. On bases of the good results obtained by protocol optimization, I applied the new methodology for the grafting and formulation of non–cytotoxic cationic polymers, and verified the efficiency of the new materials as non-viral vectors for gene delivery. In particular, I focused on the grafting of branched polyethyleneimine (bPEI), a cationic polymer bearing primary amino groups, which is one of the most widely used among non-viral vectors in gene delivery. Considering the positive effect of hydrophobic groups in increasing the efficiency of transfection, different types of modified bPEI 25KDa were synthetized, by introducing selected moieties on the pristine backbone. Derivatives obtained by means of this one-pot free-radical approach were biologically tested in terms of cytotoxicity and transfection efficiency. This research activity was part of the SAFT (Surface-Associated Selective Transfection) project, financed by MIUR (Ministero dell’Istruzione, dell’Università e della Rierca) in 2010, with the call of FIRB-Future in Research 2008.
Le reazioni multicomponenti (MCR) rappresentano un approccio green verso la sintesi di molecole polifunzionali, in quanto permettono di ridurre al minimo i rifiuti di processo e work up, attraverso la promozione di reazioni one-pot . Allo stesso tempo, lo sviluppo di reazioni radicaliche per la formazione di legami C-C risultano interessanti, grazie alla buona selettività e alle condizioni blande che queste reazioni richiedono. La combinazione di questi due approcci sintetici apre la strada per la sintesi economica e semplice di molecole polifunzionali e per l'innesto di polimeri e materiali. L'obiettivo principale di questo lavoro consiste nella ottimizzazione e applicazione di un protocollo di reazione a multicomponente di 'addizione radicalica nucleofila ad immine generati in situ, utilizzando il nuovo sistema catalitico tert-BuOOH /TiCl4-Zn. L'attività di ricerca si è sviluppata in due fasi consecutive. In un primo momento, ho ottimizzato ed esteso l'applicazione di questo protocollo utilizzando alcoli ed eteri come fonti di radicali nucleofili. Le nuove condizioni esplorate hanno permesso di ottenere una vasta gamma di prodotti finali desiderati, con alta conversione e selettività, inibendo le reazioni domino competitive collaterali. Sulla base dei buoni risultati ottenuti con l'ottimizzazione del protocollo, ho applicato la nuova metodologia per l'a modifica e la formulazione di polimeri cationici non citotossici, e verificato l'efficienza dei nuovi materiali come vettori non virali per il gene delivery. In particolare, mi sono concentrata sul grafting di polietilenimmina ramificata (bPEI), un polimero cationico con gruppi amminici primari, che è uno dei più utilizzati tra vettori non virali nel trasferimento genico. Considerando l'effetto positivo di gruppi idrofobici sull’aumento del l'efficienza di transfezione, diversi tipi di 25KDa bPEI modificati sono stati sintetizzati, introducendo porzioni selezionate sul backbone del polimero. I derivati ottenuti mediante questo approccio sono stati biologicamente testati in termini di citotossicità e efficienza di transfezione. Questa attività di ricerca è stata parte del progetto SAFT (Surface-Associated selettiva trasfezione), finanziato dal MIUR (Ministero dell'Istruzione, dell'Università e della rierca) nel 2010, con la chiamata di FIRB-Futuro in Ricerca 2008.
One-pot multicomponent free-radical reactions mediated by titanium salts
ROSSI, BIANCA
Abstract
Multicomponent reactions (MCRs) represent a green approach towards the synthesis of poly-functional molecules, as they allow to minimize process waste and work up, by promoting one-pot more bond forming mechanisms. Likewise, the development of radical-mediated C-C bond forming transformations is interesting, thanks to the good selectivity usually observed, the mild conditions requested, and the high tolerance for these reactions shown by common functional groups. The combination of this two synthetic tools opens the way for the cheap and simple synthesis of poly-functional molecules and for the grafting of polymers and materials. The main goal of this work consisted into the optimization and application of a multicomponent protocol for the nucleophilic free radical addition to imines generated in situ, using the new TiCl4-Zn/tert-BuOOH catalytic system. The research activity followed two consecutive steps. At first, I optimized and extended the application of the multicomponent free-radical approach to alcohols and ethers as nucleophilic sources. The new explored conditions enabled me to obtain a wide range of desired final products, with high conversion and selectivity, inhibiting the competitive domino side-reactions. On bases of the good results obtained by protocol optimization, I applied the new methodology for the grafting and formulation of non–cytotoxic cationic polymers, and verified the efficiency of the new materials as non-viral vectors for gene delivery. In particular, I focused on the grafting of branched polyethyleneimine (bPEI), a cationic polymer bearing primary amino groups, which is one of the most widely used among non-viral vectors in gene delivery. Considering the positive effect of hydrophobic groups in increasing the efficiency of transfection, different types of modified bPEI 25KDa were synthetized, by introducing selected moieties on the pristine backbone. Derivatives obtained by means of this one-pot free-radical approach were biologically tested in terms of cytotoxicity and transfection efficiency. This research activity was part of the SAFT (Surface-Associated Selective Transfection) project, financed by MIUR (Ministero dell’Istruzione, dell’Università e della Rierca) in 2010, with the call of FIRB-Future in Research 2008.File | Dimensione | Formato | |
---|---|---|---|
2014_11_PhD_Rossi.pdf
solo utenti autorizzati dal 08/11/2015
Descrizione: Testo della tesi
Dimensione
3.57 MB
Formato
Adobe PDF
|
3.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/98550