Aim of this doctoral dissertation is the study of the nonlinearities affecting the human body response under multi-axial whole-body vibrations (WBV). The research was entirely addressed to the characterization of the response for standing persons using a novel approach for the study of the nonlinearities of the body-transmitted vibrations. The study of the nonlinearities was performed for both single-axis and multi-axial vibration. The reference parameter for the biodynamic response of the human body was the apparent mass, i.e. the frequency response function between the transmitted force and the applied acceleration. In the first part of this work, nonlinearities were identified by conditioning the apparent mass deriving from the vertical WBV with a set of nonlinear functions of the acceleration. In the first part of the work both the acceleration and the force were measured only along the vertical direction. Afterwards, the full (three-by-three) matrix was identified with a purposely-designed excitation system composed by two electrodynamic shakers and a tri-axial force plate. The excitation was initially mono-axial and the force was measured along the three coordinated axes. Both the symmetry of the apparent mass matrix and the effect of the vibration magnitude were assessed with paired t-student and Wilcoxon signed-rank tests. In the last part of the research, the response (forces along three mutually perpendicular directions) was measured with the uncorrelated excitation along two axes. The apparent mass derived in these conditions has been compared with the one obtained upon exciting a single axis. The contributions of the nonlinear terms to the apparent mass were negligible and the nonlinearity was associated to the variation of the modal parameters in time (low frequency motion during the tests and involuntary muscular actions). The individual’s response (i.e. APMS matrix) was more dependent on the vibration magnitude. Magnitude dependent effects may be overlaid by the uncertainty introduced by a large scatter in the population’s biometric data. The conditioned APMS matrix (both population and individual) was comparable to that derived using linear estimators. The biodynamic response was influenced by the addition of a secondary transversal acceleration. In case of dual-axis excitations, the overall magnitude had a marginal contribution since dual-axis APMSs did not differ.
La tesi propone lo studio delle non linearità presenti nella risposta del corpo umano esposto a vibrazioni multiassiali. La ricerca, più nel dettaglio, ha riguardato la caratterizzazione della risposta di persone in piedi usando un nuovo approccio per lo studio delle non linearità in entrambe le condizioni di vibrazione monoassiale e multiassiale. La risposta biodinamica del corpo umano è stata espressa in termini di massa apparente, ossia la funzione di trasferimento tra la forza trasmessa e l’accelerazione imposta. Inizialmente, le non linearità sono state identificate applicando un algoritmo per il condizionamento della massa apparente introducendo nel modello alcune funzioni non lineari dell’accelerazione; entrambe le forze e l’accelerazione sono state misurate in direzione verticale. In seguito, la matrice di massa apparente è stata ottenuta impiegando un sistema d’eccitazione composto da due tavole vibranti e da una piastra per la misura triassiale delle forze. L’eccitazione è stata monoassiale e le forze sono state misurate lungo i tre assi coordinati. La simmetria della matrice e l’effetto del livello di vibrazione sono stati valutati impiegando test statistici t di Student e di Wilcoxon. Nell’ultima parte del lavoro, la risposta biodinamica è stata caratterizzata in presenza di vibrazioni (non correlate) biassiali. La risultante massa apparente è stata confrontata con quella ottenuta precedentemente in caso di eccitazione monoassiale. Il contributo dei termini non lineari per la modellazione della massa apparente è risultato trascurabile e le non linearità derivanti piuttosto da una variazione dei parametri modali del sistema generati da movimenti in bassa frequenza del corpo e contrazione involontaria dei muscoli. Il livello di accelerazione ha modificato la risposta biodinamica per i singoli individui. Tale effetto, tuttavia, diventa non significativo in caso di campioni estesi poiché compreso nell’incertezza introdotta dalla variabilità dei dati biometrici. Le matrici condizionate di massa apparente (singolo individuo e popolazione) sono risultate comparabili con quelle ottenute usando gli stimatori lineari. La risposta biodinamica è stata influenzata dall’aggiunta di un secondo asse di eccitazione. In questo caso, il livello totale di accelerazione ha avuto un ruolo marginale perché le masse apparenti non hanno differito dal caso di vibrazioni monoassiali.
Human body response to multi-axial dynamical vibrations
SOLBIATI, STEFANO
Abstract
Aim of this doctoral dissertation is the study of the nonlinearities affecting the human body response under multi-axial whole-body vibrations (WBV). The research was entirely addressed to the characterization of the response for standing persons using a novel approach for the study of the nonlinearities of the body-transmitted vibrations. The study of the nonlinearities was performed for both single-axis and multi-axial vibration. The reference parameter for the biodynamic response of the human body was the apparent mass, i.e. the frequency response function between the transmitted force and the applied acceleration. In the first part of this work, nonlinearities were identified by conditioning the apparent mass deriving from the vertical WBV with a set of nonlinear functions of the acceleration. In the first part of the work both the acceleration and the force were measured only along the vertical direction. Afterwards, the full (three-by-three) matrix was identified with a purposely-designed excitation system composed by two electrodynamic shakers and a tri-axial force plate. The excitation was initially mono-axial and the force was measured along the three coordinated axes. Both the symmetry of the apparent mass matrix and the effect of the vibration magnitude were assessed with paired t-student and Wilcoxon signed-rank tests. In the last part of the research, the response (forces along three mutually perpendicular directions) was measured with the uncorrelated excitation along two axes. The apparent mass derived in these conditions has been compared with the one obtained upon exciting a single axis. The contributions of the nonlinear terms to the apparent mass were negligible and the nonlinearity was associated to the variation of the modal parameters in time (low frequency motion during the tests and involuntary muscular actions). The individual’s response (i.e. APMS matrix) was more dependent on the vibration magnitude. Magnitude dependent effects may be overlaid by the uncertainty introduced by a large scatter in the population’s biometric data. The conditioned APMS matrix (both population and individual) was comparable to that derived using linear estimators. The biodynamic response was influenced by the addition of a secondary transversal acceleration. In case of dual-axis excitations, the overall magnitude had a marginal contribution since dual-axis APMSs did not differ.File | Dimensione | Formato | |
---|---|---|---|
2015_01_PhD_SOLBIATI.pdf
accessibile in internet per tutti
Descrizione: Testo della tesi
Dimensione
3.15 MB
Formato
Adobe PDF
|
3.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/100381