In recent years many researches in the biological and chemical fields were based on systems able to perform measurements using single photon device that can detect very low light intensity as well as being able to analyze signals with tight temporal evolution. These systems measure the fluorescence that represents photon emission from a sample being exited by light in the visible spectrum. Among those applications that rely on single photon detectors we focused our attention on two of them: Fluorescence Correlation Spectroscopy (FCS) and Förster Resonance Energy Transfer (FRET). The first one performs the correlation between various channels in order to aquire informations on the sample cells under test, while the second one exploits the time-stamping technique in order to record the arrival time of photons with respect of the beginning of the experiment. The substantial parallelism required by these applications entail for a dramatic increase in the throughput (several Gb/s). A 128-channels board was therefore designed. Aim of this board is to satisfy both high number of channels and substantial speed requests.

Negli ultimi anni molte ricerche in ambito chimico e biologico si sono basate su sistemi in grado di compiere misure a singolo fotone, poiché questi sono in grado di rivelare bassissime intensitá luminose e consentono l'analisi di segnali con evoluzioni temporali ultra-brevi. Questi sistemi misurano la fuorescenza, ovvero il fenomeno di emissione di fotoni da parte di un campione sottoposto ad eccitazione con luce nello spettro del visibile. Fra le varie applicazioni che sfruttano sistemi a singolo fotone ve ne sono due sulle quali si é stato basato il progetto di tesi: la Fluorescence Correlation Spectroscopy (FCS) e la Förster Resonance Energy Transfer (FRET). La prima effettua la correlazione fra i vari canali di acquisizione dati per ricavare informazioni sulle cellule, mentre la seconda utilizza la tecnica di time stamping che va a registrare l'istante di arrivo dei fotoni rispetto all'inizio dell'esperimento. Parallelizzando misure fatte con singoli sensori si ha un rapido incremento del throughput di dati da gestire (diversi Gb/s). Abbiamo quindi progettato e realizzato una scheda a 128 canali. Scopo di questa scheda é quello di soddisfare entrambe le richieste in termini di elevato numero di canali da gestire e velocitá di trasferimento.

Progetto e sviluppo di un sistema a 128 canali ad alto throughput per applicazioni fast correlation spectroscopy

TROI, PIETRO;RIGHETTI, FEDERICO
2013/2014

Abstract

In recent years many researches in the biological and chemical fields were based on systems able to perform measurements using single photon device that can detect very low light intensity as well as being able to analyze signals with tight temporal evolution. These systems measure the fluorescence that represents photon emission from a sample being exited by light in the visible spectrum. Among those applications that rely on single photon detectors we focused our attention on two of them: Fluorescence Correlation Spectroscopy (FCS) and Förster Resonance Energy Transfer (FRET). The first one performs the correlation between various channels in order to aquire informations on the sample cells under test, while the second one exploits the time-stamping technique in order to record the arrival time of photons with respect of the beginning of the experiment. The substantial parallelism required by these applications entail for a dramatic increase in the throughput (several Gb/s). A 128-channels board was therefore designed. Aim of this board is to satisfy both high number of channels and substantial speed requests.
LABANCA, IVAN
ING - Scuola di Ingegneria Industriale e dell'Informazione
29-apr-2015
2013/2014
Negli ultimi anni molte ricerche in ambito chimico e biologico si sono basate su sistemi in grado di compiere misure a singolo fotone, poiché questi sono in grado di rivelare bassissime intensitá luminose e consentono l'analisi di segnali con evoluzioni temporali ultra-brevi. Questi sistemi misurano la fuorescenza, ovvero il fenomeno di emissione di fotoni da parte di un campione sottoposto ad eccitazione con luce nello spettro del visibile. Fra le varie applicazioni che sfruttano sistemi a singolo fotone ve ne sono due sulle quali si é stato basato il progetto di tesi: la Fluorescence Correlation Spectroscopy (FCS) e la Förster Resonance Energy Transfer (FRET). La prima effettua la correlazione fra i vari canali di acquisizione dati per ricavare informazioni sulle cellule, mentre la seconda utilizza la tecnica di time stamping che va a registrare l'istante di arrivo dei fotoni rispetto all'inizio dell'esperimento. Parallelizzando misure fatte con singoli sensori si ha un rapido incremento del throughput di dati da gestire (diversi Gb/s). Abbiamo quindi progettato e realizzato una scheda a 128 canali. Scopo di questa scheda é quello di soddisfare entrambe le richieste in termini di elevato numero di canali da gestire e velocitá di trasferimento.
Tesi di laurea Magistrale
File allegati
File Dimensione Formato  
Completo.pdf

accessibile in internet per tutti

Descrizione: Testo della tesi
Dimensione 10.73 MB
Formato Adobe PDF
10.73 MB Adobe PDF Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/106644