The interest in quadrotors as platforms for both research and commercial unmanned aerial vehicle (UAV) applications is steadily increasing. In particular, some of the envisaged applications for quadrotors lead to tight performance requirements on the attitude control system, so wide bandwidth controllers must be designed. This, in turn, calls for increasingly accurate dynamics models of the vehicle’s response to which advanced controller synthesis approaches can be applied. In view of the these considerations an integrated procedure aimed at a fast and reliable deployment of the attitude control system for variable-pitch quadrotors was developed, encompassing identification of linear control-oriented model for the attitude response and optimization-based tuning for the parameters of the on-board controller structure. Concerning the system identification, the problem of characterizing the hover attitude dynamics of a variable-pitch quadrotor from data was considered, adopting a number of different identification methods and comparing the results, with the aim of covering: on-line and off-line estimations, input-output and state-space models, blackbox and grey-box modeling approaches. The data feeding identification algorithms were gathered in dedicated experimental campaign carried out in laboratory conditions, with the quadrotor constrained on a proper bench-test. Similar experiments have been conducted in flight to ensure that the indoor setup was representative of the actual attitude dynamics in flight for near hovering conditions. Finally, in view of both its computational efficiency (non-iterative) and the accurate performance in replicating the experimental data, the black-box PBSID subspace method was selected for the identification part of the attitude control design tool chain. With regard to control synthesis part of the integrated procedure, the problem of robust design was faced. The optimal values for the parameters of the preexisting onboard attitude controller (based on cascaded PID loops) were determined by assigning desired closed-loop stability and performance requirements, both in terms of set-point tracking and wind gust disturbance rejection capability, and solving a structured H-infinity design problem. The goal is to demonstrate that obtained attitude controller tuning, applying the H-infinity synthesis to the black-box model of the quadrotor identified in dedicated bench-test experiments, hence achieved without risky and time consuming in flight identification test campaign, guarantees acceptable performance when flying in near hovering conditions. The optimized attitude controller robustness was assessed considering the identified models (on test-bed and in flight) uncertainty, evaluated through a bootstrap based technique. The capability of dealing with faults is crucial for UAVs, especially when the vehicle has to to operate in critical missions, e.g., flying above populated areas or in proximity of industrial plants sensitive facilities, where the ability to safely conclude the flight without hurting people or causing damages could be mandatory, also in case of major failure as the complete loss of a rotor. Moreover strict safety requirements are expected to be imposed by forthcoming regulations about the use of small-medium size UAV for civil applications. For these reasons an emergency maneuver to recover a one rotor fault occurrence for a variable-pitch quadrotor was proposed, exploiting the capability to generate negative rotor thrust, peculiar feature of this architecture in comparison with the most common variable RPM implementation. The vehicle dynamics in this condition was characterized through the development of a suitable flight mechanics model, based on first principle consideration and accordingly the attitude control strategy was partially developed and tested in laboratory conditions. The research activities were carried out exploiting the collaboration with AERMATICA SpA: a quadrotor prototype with relative ground systems and laboratory bench-test have been made available from company, together with all necessary vehicle data.
L’interesse per i velivoli quadrirotori autonomi di piccole dimensioni e le loro svariate applicazioni sia commerciali che di ricerca, è costantemente in crescita. In particolare alcune delle missioni tipiche in cui possono venire impiegati tali velivoli richiedono prestazioni del sistema di controllo d’assetto particolarmente stringenti, che quindi comportano la necessità di sviluppare modelli dinamici il più possibile accurati sui quali applicare metodi di sintesi di controllo avanzati. Sulla base di queste considerazioni lo scopo principale di questo lavoro di tesi è la definizione di una procedura integrata per lo sviluppo rapido e affidabile del sistema di controllo d’assetto di quadrirotori a passo variabile, comprendente l’identificazione di adeguati modelli lineari della dinamica d’assetto a cui applicare una metodologia di ottimizzazione dei parametri dei controllori implementati a bordo. Riguardo l’identificazione, è stato affrontato il problema di caratterizzazione della risposta d’assetto del velivolo in condizioni di volo a punto fisso, adottando diversi metodi di identificazione, sia con approccio a scatola nera (modelli non strutturati) che a scatola grigia (modelli strutturati), e comparandone i risultati. I dati in ingresso alle diverse metodologie considerate sono stati raccolti in campagne di test dedicate, eseguite sia in volo che vincolando il velivolo ad appositi banchi prova in laboratorio, capaci di garantire una dinamica d’assetto rappresentativa di quella in volo a punto fisso. Da questa indagine è stato selezionato come strumento di identificazione il metodo a scatola nera ai sottospazi denominato PBSID, ritenuto il più adeguato in termini di capacità di replica dei dati sperimentali e di efficienza computazionale. Passando alla parte della procedura destinata alla sintesi del controllo d’assetto, i valori ottimi dei due controllori PID costituenti l’architettura a due anelli in cascata implementata a bordo del velivolo sono stati ottenuti utilizzando la metodologia di sintesi robusta in norma infinito strutturata, definendo adeguati requisiti di stabilità e prestazioni d’anello chiuso, sia in termini di risposta al riferimento che di reiezione al disturbo raffica di vento. Si è dimostrato che i parametri ottimali, ottenuti considerando nel sistema di controllo il processo identificato tramite PBSID sui dati da banco prova di laboratorio, sono in grado di garantire il soddisfacimento dei requisiti prestazionali anche quando applicati al modello ottenuto dai dati in volo. Ne consegue quindi che la procedura sviluppata consente di determinare i parametri ottimi dei controllori d’assetto, per il volo a punto fisso del quadrirotore, basandosi su un modello della dinamica ottenuto da prove di identificazione in laboratorio, evitando la campagna di test in volo, caratterizzata da condizioni meno ripetibili (dati maggiormente rumorosi e incerti) ed operazioni più lunghe e rischiose rispetto a quella al banco. La robustezza dei parametri di controllo ottimi nei confronti dell’incertezza di modello, valutata tramite tecnica bootstrap, è stata adeguatamente verificata conducendo opportune simulazioni Monte Carlo. Secondariamente è stato trattato un argomento cruciale per i velivoli autonomi. La capacità di reagire opportunamente ad eventuali guasti è di vitale importanza, soprattutto quando i quadrirotori vengono utilizzati per missioni su aree popolate o in prossimità di impianti industriali sensibili, dove è essenziale poter terminare in sicurezza il volo in caso di avaria senza causare danni a persone o cose. Inoltre le recenti regolamentazioni aeronautiche emesse o in via di definizione sull’utilizzo di tali sistemi imporranno severi requisiti in termini di sicurezza e affidabilità. Chiaramente una delle avarie a impatto maggiore è la perdita di funzionalità di un rotore, per questo motivo si è studiata e definita un’opportuna manovra di emergenza per far fronte a questa evenienza, sfruttando la peculiare capacità dei rotori a passo variabile di generare spinta negativa, non possibile invece per l’architettura più comune di quadrirotore, che adotta rotori a giri variabili (passo pale fisso). La dinamica del velivolo con soli tre rotori funzionanti è stata caratterizzata definendo adeguati modelli a principi primi, ed è stata sviluppata la strategia di controllo d’assetto per effettuare la manovra di emergenza, verificandone parzialmente la validità tramite test in laboratorio su appositi banchi prova. L’attività di ricerca è stata condotta sfruttando la collaborazione con l’azienda AERMATICA SpA, che ha fornito un prototipo di quadrirotore, con relativa stazione di terra e le necessarie attrezzature di laboratorio.
Model identification and control of variable pitch quadrotor UAVs
RICCARDI, FABIO
Abstract
The interest in quadrotors as platforms for both research and commercial unmanned aerial vehicle (UAV) applications is steadily increasing. In particular, some of the envisaged applications for quadrotors lead to tight performance requirements on the attitude control system, so wide bandwidth controllers must be designed. This, in turn, calls for increasingly accurate dynamics models of the vehicle’s response to which advanced controller synthesis approaches can be applied. In view of the these considerations an integrated procedure aimed at a fast and reliable deployment of the attitude control system for variable-pitch quadrotors was developed, encompassing identification of linear control-oriented model for the attitude response and optimization-based tuning for the parameters of the on-board controller structure. Concerning the system identification, the problem of characterizing the hover attitude dynamics of a variable-pitch quadrotor from data was considered, adopting a number of different identification methods and comparing the results, with the aim of covering: on-line and off-line estimations, input-output and state-space models, blackbox and grey-box modeling approaches. The data feeding identification algorithms were gathered in dedicated experimental campaign carried out in laboratory conditions, with the quadrotor constrained on a proper bench-test. Similar experiments have been conducted in flight to ensure that the indoor setup was representative of the actual attitude dynamics in flight for near hovering conditions. Finally, in view of both its computational efficiency (non-iterative) and the accurate performance in replicating the experimental data, the black-box PBSID subspace method was selected for the identification part of the attitude control design tool chain. With regard to control synthesis part of the integrated procedure, the problem of robust design was faced. The optimal values for the parameters of the preexisting onboard attitude controller (based on cascaded PID loops) were determined by assigning desired closed-loop stability and performance requirements, both in terms of set-point tracking and wind gust disturbance rejection capability, and solving a structured H-infinity design problem. The goal is to demonstrate that obtained attitude controller tuning, applying the H-infinity synthesis to the black-box model of the quadrotor identified in dedicated bench-test experiments, hence achieved without risky and time consuming in flight identification test campaign, guarantees acceptable performance when flying in near hovering conditions. The optimized attitude controller robustness was assessed considering the identified models (on test-bed and in flight) uncertainty, evaluated through a bootstrap based technique. The capability of dealing with faults is crucial for UAVs, especially when the vehicle has to to operate in critical missions, e.g., flying above populated areas or in proximity of industrial plants sensitive facilities, where the ability to safely conclude the flight without hurting people or causing damages could be mandatory, also in case of major failure as the complete loss of a rotor. Moreover strict safety requirements are expected to be imposed by forthcoming regulations about the use of small-medium size UAV for civil applications. For these reasons an emergency maneuver to recover a one rotor fault occurrence for a variable-pitch quadrotor was proposed, exploiting the capability to generate negative rotor thrust, peculiar feature of this architecture in comparison with the most common variable RPM implementation. The vehicle dynamics in this condition was characterized through the development of a suitable flight mechanics model, based on first principle consideration and accordingly the attitude control strategy was partially developed and tested in laboratory conditions. The research activities were carried out exploiting the collaboration with AERMATICA SpA: a quadrotor prototype with relative ground systems and laboratory bench-test have been made available from company, together with all necessary vehicle data.File | Dimensione | Formato | |
---|---|---|---|
2015_03_PhD_Riccardi.pdf
solo utenti autorizzati dal 12/02/2018
Descrizione: Testo della tesi
Dimensione
52.08 MB
Formato
Adobe PDF
|
52.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/107295