This Ph.D. Thesis investigates the interaction control problem for lightweight manipulators in industrial contexts, developing impedance control based algorithms to execute such interacting tasks, ensuring stability and improving performance of standard control schemes. Such Ph.D. Thesis has been carried out at the Institute of Industrial Technologies and Automation (ITIA) of the italian National Research Council (CNR), Intelligent Robot and Automation Systems group (IRAS). The control strategies design has been addressed developing dynamic models of the global plant based on the typical application scenario compliant robot base - controlled robot - compliant interacting environment. Each element of such interaction scheme has been studied in order to identify the complete model. Such interaction model has been used both for a theoretical analysis (i.e. stability proof and simulations) and for the implementation of the control scheme (i.e. observers definition). An in-depth study of the interaction problem for lightweight manipulator allowed the conceive of a novel family of impedance shaping controllers. Such controllers globally extend impedance variable controllers and overcome some limitations of such state-of-the-art interaction controllers. The defined controllers allow to track a target interaction force, both considering rigid and compliant robot bases scenarios, shaping the impedance of the global system, adapting the impedance control parameters while eventually compensating the dynamics of the compliant base. This is done tuning on-line both the position set-point and the stiffness and damping parameters based on both the force error and the estimate of the interacting environment (an Extended Kalman Filter is used to estimate the environment stiffness) and the robot base dynamics (a Kalman Filter is used to estimate the robot base position). The goals of such control strategies are (i) to avoid force orvershoots and instabilities (ii) while tracking a force reference and (iii) eventually compensating for the compliant robot base dynamics, (iv) maximizing dynamic performance during the free-space motion (i.e. the initial phase of the task, which leads to the first contact establishment). The novelty of the impedance shaping controllers family is inherent to the ability of the controllers to adapt whole the parameters while estimating the interacting environment and taking into account the robot base dynamics. To validate the proposed control schemes a real assembly task has been selected as application. The task has been performed without knowing the environment's geometrical and mechanical properties. Results show the effectiveness of the proposed control strategies, compared with control schemes in literature (in particular, a second order explicit force tracking controller based on the impedance control), that show force overshoots, instabilities and lower dynamic performance.
La presente Tesi di Dottorato prende in considerazione il problema del controllo di interazione per manipolatori leggeri in contesto industriale, sviluppando algoritmi di controllo di impedenza al fine di eseguire un task di controllo di interazione, garantendo la stabilità del sistema accoppiato e il miglioramento delle prestazioni dinamiche rispetto ai controllori standard. Tale Tesi è stata effettuata presso l'Istituto di Tecnologie Industriali e Automazione (ITIA) del Consiglio Nazionale delle Ricerche (CNR), all'interno del gruppo IRAS. La definizione delle strategie di controllo è stato affrontato a partire dallo sviluppo di modelli dinamici del sistema globale (robot controllato - base cedevole - ambiente interagente cedevole). Ogni elemento di tale schema di interazione è stato studiato in modo da identificare il modello completo. Tale modello di interazione è stato utilizzato sia per una analisi teorica, che per l'implementazione dell'architettura di controllo. Uno studio approfondito del problema di interazione ha permesso di concepire una nuova famiglia di controllori denominata impedance shaping. Tali controllori estendono il controllo standard di impedenza in modo da ovviare alle limitazioni di tali controllori. I controllori definiti permettono di effettuare il tracking di una forza di interazione, adattando i parametri del controllo di impedenza e compensando la dinamica della base del manipolatore. Gli obiettivi delle strategie di controllo sviluppate sono (i) evitare orvershoot di forza e instabilità (ii) mentre si esegue un task di controllo di forza ed (iii) eventualmente compensare la dinamica dovuta alla base cedevole del manipolatore, (iv) massimizzando le prestazioni dinamiche. Per validare i controllori proposti, un compito di assemblaggio è stato selezionato come applicazione target. Il compito è stato eseguito senza conoscere le proprietà geometriche e meccaniche dell'ambiente in interazione. I risultati mostrano l'efficacia delle strategie di controllo proposte rispetto ai sistemi di controllo in letteratura, che mostrano overshoot di forza e instabilità.
Model based compliance shaping control of light-weight manipulator in hard-contact industrial applications
ROVEDA, LORIS
Abstract
This Ph.D. Thesis investigates the interaction control problem for lightweight manipulators in industrial contexts, developing impedance control based algorithms to execute such interacting tasks, ensuring stability and improving performance of standard control schemes. Such Ph.D. Thesis has been carried out at the Institute of Industrial Technologies and Automation (ITIA) of the italian National Research Council (CNR), Intelligent Robot and Automation Systems group (IRAS). The control strategies design has been addressed developing dynamic models of the global plant based on the typical application scenario compliant robot base - controlled robot - compliant interacting environment. Each element of such interaction scheme has been studied in order to identify the complete model. Such interaction model has been used both for a theoretical analysis (i.e. stability proof and simulations) and for the implementation of the control scheme (i.e. observers definition). An in-depth study of the interaction problem for lightweight manipulator allowed the conceive of a novel family of impedance shaping controllers. Such controllers globally extend impedance variable controllers and overcome some limitations of such state-of-the-art interaction controllers. The defined controllers allow to track a target interaction force, both considering rigid and compliant robot bases scenarios, shaping the impedance of the global system, adapting the impedance control parameters while eventually compensating the dynamics of the compliant base. This is done tuning on-line both the position set-point and the stiffness and damping parameters based on both the force error and the estimate of the interacting environment (an Extended Kalman Filter is used to estimate the environment stiffness) and the robot base dynamics (a Kalman Filter is used to estimate the robot base position). The goals of such control strategies are (i) to avoid force orvershoots and instabilities (ii) while tracking a force reference and (iii) eventually compensating for the compliant robot base dynamics, (iv) maximizing dynamic performance during the free-space motion (i.e. the initial phase of the task, which leads to the first contact establishment). The novelty of the impedance shaping controllers family is inherent to the ability of the controllers to adapt whole the parameters while estimating the interacting environment and taking into account the robot base dynamics. To validate the proposed control schemes a real assembly task has been selected as application. The task has been performed without knowing the environment's geometrical and mechanical properties. Results show the effectiveness of the proposed control strategies, compared with control schemes in literature (in particular, a second order explicit force tracking controller based on the impedance control), that show force overshoots, instabilities and lower dynamic performance.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_Roveda.pdf
accessibile in internet per tutti
Descrizione: Roveda Loris, PhD Thesis
Dimensione
20.65 MB
Formato
Adobe PDF
|
20.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/109742