The objective of the present work is the development of physics models and simulations techniques for granular media behavior in space environment, subject to force fields in order to trap them in chosen configurations. The derivation of models of large numbers of rigid particles of simple shapes (half-spheres) and the determination of the stability of their motion over time is important in this problem. Inside the granular medium cloud, which itself could be, at the end, considered as a single rigid body, the higher frequency oscillations determine the final stability of the system for the tasks required. This research find place in the NASA Jet Propulsion Laboratory ”Orbiting Rainbows” project, and in particular the goal is to orient the particles following the light direction once they are trapped. After a brief introduction about the project in which this research is inserted, a short review about what is the current status of researches like this one is carried out. Then, after the first computational improvement for the model of a semi-sphere in space with the introduction of quaternion in the kinematics, 2D force field simulations, stability analysis and the introduction of attitude control are desribed in Chapter 4. A sensitivity analysis of the control frequency based on the variation of the control gains is carried out. An additional light source is introduced to successfully control both the position and the rotation in a 2D environment and a stability analysis of the non-linear coupled system is performed. Up to know no model which consider out of plane forces exists. In Chapter 5, a new model for the particles in space is developed starting from the previous improvements considering force field also in out of plane directions. The stability of this system is studied through linearization. Non-linearites due to the approximation in the stability analysis apper and the validity of the model is confirmed simulating it and finding the expected results. Finally, everything is applied in a multi-body system, both under constant light intensity, and with a control law on the average orientation and angular velocity of the system, composed of many grains. Good results are obtained, having created a tool that could be used with more sophisticated control algorithms. The software MATLAB and Chrono::Engine, a multibody dynamics sim- ulator are used. When a simulation with great number of rigid bodies is required, only Chrono::Engine is particularly effective. The conclusion is that pushing further the analogy with the aerodynamic field, it is possible to model and eventually to control the hemispheres in a 3D force field, with exception of the spin rotation.
L'obiettivo di questa tesi è lo sviluppo di un modello della dinamica di un corpo granulare nello spazio sottoposto a campi di forze che lo confinino nelle configurazioni desiderate. La derivazione di modelli di un gran numero di corpi rigidi di semplice forma (semisfere) e la determinazione della stabilità del loro moto nel tempo sono di primaria importanza. All'interno di una nuvola di materiale granulare, le oscillazioni ad alta frequenza influenzano e determinano la stabilità finale del sistema. Questa ricerca trova posto nel progetto "Orbiting Rainbows" sviluppato al "NASA Jet Propulsion Laboratory" e in particolare l'obiettivo è quello di orientare le particelle tramite l'utilizzo di sorgenti luminose una volta che esse sono confinate. Dopo una breve introduzione a proposito del progetto all'interno del quale trova spazio questa ricerca, viene fatto un breve riepilogo dello stato dell'arte di ricerche simili. Quindi, dopo un primo miglioramento di modelli esistenti attraverso l'uso dei quaternioni in cinematica, vengono riportate simulazioni in 2D, analisi di stabilità e l'introduzione del controllo. Un'analisi della dipendenza della frequenza di controllo sulla base della variazione dei guadagni del controllore viene dunque eseguita. Una sorgente luminosa addizionale viene introdotta per controllare con successo sia la posizione che la rotazione della particella in un ambiente 2D e viene svolta una analisi della stabilità del sistema non lineare. Fino ad ora non esiste un modello che consideri l'applicazione di forse in 3D. Viene sviluppato un nuovo modello considerando un campo di forze completo e la cui stabilità viene studiata attraverso la linearizzazione del sistema. Alla fine, tutto quello che è stato sviluppato viene applicato in un sistema multi-body, sia con in ingresso una intensità della sorgente luminosa costante, sia con l'utilizzo di una legge di controllo sulla orientazione e sulla velocità angolare media del sistema. Buoni risultati iniziali sono stati ottenuti, avendo creato un sistema che può essere ampliato con algoritmi di controllo più avanzati. Sono utilizzati i software MATLAB e Chrono::Engine, un simulatore di dinamica multibody. Quanto un grande numero di particelle viene richiesto, solo Chrono::Engine e' particolarmente efficiente. La conclusione è che spingendo oltre l'analogia con il mondo dell'aerodinamica è possibile modella ed eventualmente controllare le semisfere in un campo di forze 3D, ad eccezione della rotazione attorno al terzo asse.
Simulation of granular media behaviour in space environment
LANZONI, LUCA
2016/2017
Abstract
The objective of the present work is the development of physics models and simulations techniques for granular media behavior in space environment, subject to force fields in order to trap them in chosen configurations. The derivation of models of large numbers of rigid particles of simple shapes (half-spheres) and the determination of the stability of their motion over time is important in this problem. Inside the granular medium cloud, which itself could be, at the end, considered as a single rigid body, the higher frequency oscillations determine the final stability of the system for the tasks required. This research find place in the NASA Jet Propulsion Laboratory ”Orbiting Rainbows” project, and in particular the goal is to orient the particles following the light direction once they are trapped. After a brief introduction about the project in which this research is inserted, a short review about what is the current status of researches like this one is carried out. Then, after the first computational improvement for the model of a semi-sphere in space with the introduction of quaternion in the kinematics, 2D force field simulations, stability analysis and the introduction of attitude control are desribed in Chapter 4. A sensitivity analysis of the control frequency based on the variation of the control gains is carried out. An additional light source is introduced to successfully control both the position and the rotation in a 2D environment and a stability analysis of the non-linear coupled system is performed. Up to know no model which consider out of plane forces exists. In Chapter 5, a new model for the particles in space is developed starting from the previous improvements considering force field also in out of plane directions. The stability of this system is studied through linearization. Non-linearites due to the approximation in the stability analysis apper and the validity of the model is confirmed simulating it and finding the expected results. Finally, everything is applied in a multi-body system, both under constant light intensity, and with a control law on the average orientation and angular velocity of the system, composed of many grains. Good results are obtained, having created a tool that could be used with more sophisticated control algorithms. The software MATLAB and Chrono::Engine, a multibody dynamics sim- ulator are used. When a simulation with great number of rigid bodies is required, only Chrono::Engine is particularly effective. The conclusion is that pushing further the analogy with the aerodynamic field, it is possible to model and eventually to control the hemispheres in a 3D force field, with exception of the spin rotation.File | Dimensione | Formato | |
---|---|---|---|
LucaLanzoni_TesiJPL_LAST.pdf
non accessibile
Descrizione: Thesis text
Dimensione
5.53 MB
Formato
Adobe PDF
|
5.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/135458