Vibrations-based energy harvesters have been proposed as autonomous power sources for meeting the limited power requirements of present-day sensors and electronics. Recent research reveals that nonlinear energy harvesters outperform their linear counterparts, owing to their wide frequency bandwidth, which allows for better performance in realistic operational environments. Particularly, bi-stable energy harvesters designed to exploit piezoelectricity to achieve the mechanical to electrical energy conversion, have been widely investigated in literature. Since research on bi-stable energy harvesters is relatively recent, some aspects related to the design of such devices still need to be analyzed. Specifically, the effect of the electro-mechanical coupling and load optimization based on the dynamical state of a bi-stable energy harvester, are two aspects which have not been completely discussed. In this sense, this Master Thesis expands the current knowledge of bi-stable harvesters by focusing on the aforementioned gaps in literature. Additionally, several investigations have been proposed to enhance power conversion in linear harvesters by introducing nonlinear circuits, e.g. based on synchronized switch (SS). Less attention has been devoted to the implications of the different dynamical regimes exhibited by harvesters showing structural nonlinearity in the nonlinear conversion techniques. Specifically, synchronized switch harvesting on inductor (SSHI) circuits connected in parallel with the harvester, facilitate an artificial increase in the output voltage from nonlinear harvesters, thus allowing for higher power generation with respect to a standard shunt load. The second goal of this Master Thesis is to investigate the effects of utilizing a self-powered SSHI for enhancing the harvested power from a bi-stable energy harvester. Particularly, semi-analytical, numerical and experimental results provide an exhaustive study on the efficiency of a bi-stable harvester connected to a SSHI shunt, focusing on its effect on the archetypal mechanical nonlinear dynamics and the resultant performance.
Recuperatori energetici basati su vibrazioni sono stati proposti come sorgenti di energia autonome per soddisfare la bassa richiesta di potenza di sensori di ultima generazione. La ricerca effettuata negli ultimi anni, rivela che recuperatori energetici nonlineari offorno prestazioni migliori della loro controparte lineare, dovute alla loro risposta in banda larga, che offre caratteristiche migliori in un ambiente operativo reale. In particolare, recuperatori energetici bistabili con materiali piezoelettrici, sono stati ampiamente studiati in letteratura. Tuttavia, essendo la ricerca in questo settore piuttosto recente, alcuni aspetti relativi alla progettazione di dispositivi bi-stabili devono essere ancora propriamente investigati; nello specifico, l’effetto dell’accoppiamento elettro-meccanico e l’ottimizzazione dell’impedenza elettrica in base al comportamento dinamico del sistema, sono due aspetti che non sono stati completamente discussi in letteratura. In questo senso, la presente Tesi contribuisce in primo luogo ad aumentare i risultati presenti nella letteratura relativa a recuperatori energetici bistabili. In secondo luogo, diversi studi sono stati proposti per aumentare la conversione di energia in recuperatori lineari, introducendo circuiti elettrici nonlineari, ad esempio basati su switches sincronizzati (SS). Meno attenzione è stata data alle implicazioni del diverso regime dinamico esibito da recuperatori caratterizzati da nonlinearità strutturali nella tecnica di conversione nonlineare. In particolare, circuiti SSHI (synchronized switch harvesting on inductor) connessi in parallelo al recuperatore, assicurano un aumento artificiale della tensione in output, garantendo una più alta generazione di potenza rispetto a un circuito standard puramente resistivo. Il secondo obiettivo di questa Tesi è pertanto quello di investigare gli effetti legati all’utilizzo di un circuito SSHI auto-alimentato per migliorare la potenza recuperata da un dispositivo bistabile. In particolare, risultati semi-analitici, numerici e sperimentali vengono proposti per analizzare esaustivamente l’efficienza di un circuito SSHI connesso a un recuperatore bistabile, focalizzandosi sugli effetti nei suoi comportamenti dinamici e performance.
Electro-mechanical nonlinearities in a bi-stable piezoelectric energy harvester
ALARI, LORENZO
2016/2017
Abstract
Vibrations-based energy harvesters have been proposed as autonomous power sources for meeting the limited power requirements of present-day sensors and electronics. Recent research reveals that nonlinear energy harvesters outperform their linear counterparts, owing to their wide frequency bandwidth, which allows for better performance in realistic operational environments. Particularly, bi-stable energy harvesters designed to exploit piezoelectricity to achieve the mechanical to electrical energy conversion, have been widely investigated in literature. Since research on bi-stable energy harvesters is relatively recent, some aspects related to the design of such devices still need to be analyzed. Specifically, the effect of the electro-mechanical coupling and load optimization based on the dynamical state of a bi-stable energy harvester, are two aspects which have not been completely discussed. In this sense, this Master Thesis expands the current knowledge of bi-stable harvesters by focusing on the aforementioned gaps in literature. Additionally, several investigations have been proposed to enhance power conversion in linear harvesters by introducing nonlinear circuits, e.g. based on synchronized switch (SS). Less attention has been devoted to the implications of the different dynamical regimes exhibited by harvesters showing structural nonlinearity in the nonlinear conversion techniques. Specifically, synchronized switch harvesting on inductor (SSHI) circuits connected in parallel with the harvester, facilitate an artificial increase in the output voltage from nonlinear harvesters, thus allowing for higher power generation with respect to a standard shunt load. The second goal of this Master Thesis is to investigate the effects of utilizing a self-powered SSHI for enhancing the harvested power from a bi-stable energy harvester. Particularly, semi-analytical, numerical and experimental results provide an exhaustive study on the efficiency of a bi-stable harvester connected to a SSHI shunt, focusing on its effect on the archetypal mechanical nonlinear dynamics and the resultant performance.File | Dimensione | Formato | |
---|---|---|---|
Thesis_Bistable_EnergyHarvesting.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Testo della tesi
Dimensione
5.5 MB
Formato
Adobe PDF
|
5.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/137874